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We formalize two micro provers for propositional logic in Isabelle/HOL and Agda. The provers are
used in an automated reasoning course at DTU where they concretize discussions of soundness and
completeness. The students are familiar with functional programming beforehand but formalizing
the provers, and other programs, introduces the students to formally verified functional programming
in a proof assistant. Proofs that have been informal in previous courses, for instance of termination,
can now be verified by the machine, and the provers provide practical examples. Similarly, the formal
meta-languages provided by the formalizations clarify boundaries that can be muddled with pen and
paper, for instance between syntactic and semantic arguments. We find that the automation available
in Isabelle/HOL provides succinctness while the verification in Agda closer resembles functional
programming.

1 Introduction

Proof assistants come in many flavors but the two major ones have been those based on simple type theory, also
known as higher-order logic, like HOL Light, HOL4 and Isabelle/HOL and those based on dependent type theory
like Agda, Coq and Lean. In this paper we consider their use in teaching automated reasoning and functional
programming. Specifically, we translate a formalization in Isabelle/HOL [24]], where the functional programs can
be written succinctly but the formal verification uses additional features, into a formalization in Agda (2.6.1) [9,139]
where the verification is also functional programming.

Our main interest in the formalizations of logic is for teaching logic, automated reasoning and functional
programming to computer science students at the Technical University of Denmark (DTU). We have developed the
Sequent Calculus Verifier (SeCaV) [10] for first-order logic but it consists of thousands of lines in Isabelle/HOL
and has no decision procedure. Our object of study here is a decision procedure for a small, but adequate, fragment
of classical propositional logic. We formalize two such provers. The first returns counterexamples and the second
simply answers true or false. These provers are not trivial: they break down the formula in the style of a sequent
calculus and neither of the proof assistants can verify their termination automatically. Still, the provers are simple
enough to be the first examples in a course. As provers for propositional logic they enable discussions of properties
like soundness and completeness that are relevant in automated reasoning. At the same time, they are concrete
examples of functional programming where properties like termination can be viewed from that perspective.

In 2020 we used the provers in our new MSc course “Automated Reasoning” with 27 students:

https://kurser.dtu.dk/course/02256

We only presented the Isabelle/HOL formalization [36]. In 2021 52 students have registered for the spring
course and we now also have the Agda formalization and we put additional focus on the functional program-
ming aspects. The formalizations, 64 lines (47 sloc) in file Micro_Prover.thy and 416 lines (333 sloc) in file
microprover.agda are available here:

https://github.com/logic-tools/micro
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Formulas p, ¢, ... in classical propositional logic are built from propositional symbols, falsity (L) and
implications (p — q).
Abbreviations:
p=p—o>Ll pAgq=-(p—>q pVg=-pogq
Let I' and A be finite sets of formulas.

The axioms of the sequent calculus are of the form:

TU{p}rAU{p} TU{L}FA

The rules of the sequent calculus are left and right introduction rules:

't Au{p} ruigirA Tu{p}+rAuiq}
FTu{p—-gqi+rA I'rAU{p—>q}

Figure 1: The sequent calculus.

The paper strives to be self-contained so consulting the formalizations is optional. We use a fragment of
propositional logic with implication and falsity only. This fragment makes it possible to create a suitable set of
sample formulas for the students to consider. For ease of reference, the two-sided sequent calculus for classical
propositional logic that we base the provers on is provided in fig.[I] Also for ease of reference, we give the full
Isabelle/HOL formalization without examples in fig.

As an illustration, here is a manually constructed sequent calculus proof in the online tool for teaching logic
http://logitext.mit.edu (the online tool does not provide a formally verified prover):

AFB,A (1)
FA—B,A AFA
(A—>B)—>AFA
F(A—B)—A)— A

(=1
(—=1)

We could also just specify the provers in a regular programming language instead of a proof assistant, but
we appreciate the support given by the latter. The canonical meta-language for presenting a logic, whether in
a paper or a teaching situation, is formal natural language. Not just the syntax and semantics are presented in
this way, but also proof systems and their side conditions or meta-theoretical proofs themselves. This can lead to
ambiguity and sometimes confusion, in particular in students. The terms we use in formal language have precise
meanings but they are often learned by experience and are not always clear to newcomers. The same observation
can be made about proofs concerning functional programs. This motivates our interest in precise meta-languages
like simple or dependent type theory. Here we can define our logics and programs in an unambiguous and even
machine-verifiable way that leaves nothing open for interpretation. While students will sometimes confuse notions
when using pen and paper and, say, make semantic arguments in the middle of a syntactic proof, a formal meta-
language keeps the boundaries straight. As such, we contrast the meta-languages of Isabelle/HOL and Agda in
the formalizations of simple provers to better understand the strengths and weaknesses of each. We consider
syntax and semantics, the specification of executable provers and their termination, and meta-theoretical results
like soundness and completeness. The comparison provides some pointers on what language to choose depending
on one’s priorities.


http://logitext.mit.edu

theory Micro-Prover imports Main begin
datatype ‘a form = Pro ’a | Falsity (¢ L)) | Imp < ’a form) < 'a form) (infix ( —) 0)

primrec semantics where
(semantics i (Pron) =in)|
(semantics - L = False) |
¢semantics i (p — q) = (semantics i p — semantics i q)>

abbreviation (sc X Yi = (Vp € set X. semantics i p) — (q € set Y. semantics i q))

function u where
(WABPron#C)[l=um#A)BCI]|

(WABC (Pron#D)=puAm#B)CD>|
(p--(L#)[1=1{]

(MABC(L#D)=puABCD)|

(HAB((p— ) #C)[1=pABCIplUuAB@#O) D]
(WABC((p—>q)#D)=puAB@#C)(g#D)|

(uA B[] =(if set AN set B={}then {A} else {}))

by pat-completeness simp-all

termination by (relation ¢ measure (A(-,-,C,D). Y,p < C @ D. size p)>) simp-all

lemma sat: ¢ sc (map ProA @ C) (map ProB @ D) (An.nesetL)—=L¢uABCD)
by (induct rule: p.induct) auto

theorem main: < (Vi. sc (map ProA @ C) (map ProB @ D)i) «— uABCD ={})
by (induct rule: p.induct) (auto simp: sat)

primrec member where
(member - [] = False |
(member m (n# A) = (if m = n then True else member m A))

lemma member-iff [iff]: ¢ member m A «— m € set A>
by (induct A) simp-all

primrec common where
<common - [] = False |
Ccommon A (m # B) = (if member m A then True else common A B))

lemma common-iff [iff]: ¢ common A B «— set A N set B # {})
by (induct B) simp-all

function mp where
mpABPron#C)[]=mpn#A)BCI]|
(mpABC (Pron#D)=mpA(n#B)CD)|
<mp - - (Falsity # -) [1 = True) |
(mpABC (Falsity # D) =mp ABC D) |
(mpABUmppq#C)[]=(fmpABC [p]lthenmpAB (q# C)[] else False) > |
(mpABC(mppqg#D)=mpAB@p#C)(q#D))|
(mp A B[] []=commonAB)
by pat-completeness simp-all

termination by (relation ¢ measure (A(-,-,C,D). Y,p < C @ D. size p))) simp-all

lemma mp-iff [iff: <mpABCD «— puABCD={})
by (induct rule: p.induct) simp-all

definition  prover p = mp ][] (] [p]»

corollary ¢ prover p «— (Vi. semantics i p))
unfolding prover-def by (simp flip: main)

end

Figure 2: The full formalization in Isabelle/HOL.



We should be clear that the two formalizations are not one-to-one. In Isabelle/HOL we leave the sequent cal-
culus implicit while in Agda we bring it out explicitly, making the formalization bigger but also more informative.
Another advantage for Isabelle/HOL is that we formalize simply-typed programs in simple type theory. If we
computed more evidence in our provers, the formalization in Agda would likely be smoother. We leave this for
future work. Instead, we work with the same simple definitions and see how Agda lives up to the challenge.

We discuss related work in section [2| We formalize the syntax and semantics of propositional logic in sec-
tion 3] and define the sequent calculus in section 4] where we also prove its soundness (we only do this in Agda
since in Isabelle/HOL the underlying sequent calculus is left implicit). We define the first prover which returns
counterexamples in section[5] and prove its termination, soundness and completeness. In section [6] we move to the
refined second prover and show its soundness and completeness by equivalence with the first prover. We discuss
teaching formally verified functional programming in section[7]along with future work, including possible variants
of the provers. Finally, we conclude in section [§]

2 Related Work

The history of completeness proofs goes back to Hilbert for propositional logic [42]]. Later, Godel famously
showed the completeness of first-order logic [11] and Henkin simplified Goédel’s proof [[13]. Kumar et al. recently
mechanized the semantics of higher-order logic and a soundness proof for the inference system of the HOL Light
kernel [19]. On the constructive side, Persson showed completeness for intuitionistic first-order logic in Martin-
Lof type theory using the proof assistant ALF [27]]. We have recently formalized a classical first-order sequent
calculus and its relation to natural deduction [10]].

In this paper we verify the completeness of concrete decision procedures, not just logical calculi. Shankar
did the same in the Boyer-Moore theorem prover for a different fragment of propositional logic. They relate the
prover to an axiomatic proof system instead of the semantics [35]. Margetson and Ridge formalized completeness
of first-order logic in Isabelle/HOL [20]. Their proof is in the Beth-Hintikka style [17] using an implicit search
procedure on proof trees. Later they arrive at an actual prover that can be exported to OCaml [30} 38]]. Blanchette,
Popescu and Traytel also employ the Beth-Hintikka style in their work on soundness and completeness proofs by
coinductive methods in Isabelle/HOL [4]. They produce Haskell code for a verified semidecision procedure for
first-order logic, parameterized by the proof rules for a sequent calculus or tableau system. Blanchette gives an
overview of the formalized metatheory of various other logical calculi and automatic provers in Isabelle/HOL [3]].
Jensen et al. verify a declarative prover for first-order logic in Isabelle/HOL [16].

The work by Michaelis and Nipkow on propositional proof systems in Isabelle/HOL is close to ours [21]. We
have used their formalization as starting point and they give a similar prover but we have simplified the termination
measure, return value and completeness proofs. We have also made the prover non-sequential, i.e. deterministic,
which simplifies our induction proofs. They only give a prover that returns counterexamples and use it primarily as
aid for their completeness proof for sequent calculus. We give a prover designed to be executable with definitions
based on lists and booleans rather than sets.

Many provers for propositional logic are based on SAT solving and the resolution calculus [1]]. Michaelis and
Nipkow formalized a resolution calculus [21]]. Schlichtkrull proved the completeness of first-order resolution [31]]
and the completeness has also been proved for ordered resolution [32,[33].

Paulson has formalized Godel’s incompleteness theorems in Isabelle/HOL [25) 26]. Popescu and Traytel
upgraded Paulson’s development, giving an abstract development of the incompleteness theorems that does not
rely on any notion of model or semantic interpretation [28].

Proof assistants have been used for teaching logic and formal methods [2} |5} [14} [18]] but usually without
formalizations of proof systems and provers, though there are exceptions [[7, (8,110,134}, 138]]. There are also examples,
like Proust [29], where a proof assistant itself is developed as part of a curriculum, but again without formally
verifying correctness.

Proof assistants have also been used for teaching semantics of programming languages [23] and verified anal-
ysis of algorithms [22].



3 Syntax and Semantics

In both Isabelle/HOL and Agda we deeply embed the propositional logic in the meta-logic by giving the syntax as
a datatype and the semantics as a function on that datatype.

3.1 Syntax

The syntax of our propositional logic consists of propositional symbols, a logical constant for falsity and finally
implication. In Isabelle/HOL it becomes the following datatype from fig.|2{ where we use a type variable 'a for the
universe of propositional symbols:

datatype ‘a form = Pro ’a | Falsity (¢ L)) | Imp <’a form) < 'a form> (infix ¢ =) 0)

All types in Isabelle are equipped with equality, so the use of a type variable is no complication. In Agda we
fix the propositional symbols to be natural numbers since these have decidable equality and thus we are free from
having to explain the intricacies of equality in Agda:

Id : Set
Id=N

The precedence of the infix symbol for implication has to be given separately:
infixr 6 -=_
But then we are ready to declare the datatype corresponding to the syntax:

data Form : Set where
falsity : Form
pro: (x: Id) — Form
=_: (p: Form) (¢ : Form) — Form

The constructor names match the Isabelle/HOL but in lowercase, whereas the type is now capitalized.

3.2 Semantics

The Isabelle/HOL semantics function returns a boolean in the meta-logic for whether the formula is true under a
given interpretation:

primrec semantics where
(semantics i (Pron) =in)|
(semantics - L = False) |
(semantics i (p — q) = (semantics i p — semantics i q))

We delegate to the meta-logic implication to interpret the object logic counterpart. Similarly, we use the
universal and existential quantifiers from the meta-logic to interpret a sequent:

abbreviation (sc X Y i = (Vp € set X. semantics i p) — (Iq € set Y. semantics i q))

We can understand X as assumptions and Y as possible conclusions: the sequent holds if the assumptions
guarantee that at least one of the conclusions hold.
In Agda we introduce a shorthand for the type of an interpretation, which produces a boolean like in Isabelle:

Interp : Set _
Interp = Id — Bool



The semantics function no longer returns a simple boolean but a type that is inhabited if and only if the formula
is true under the interpretation. This allows us to use existing Agda definitions like Dec, Any and All in the later
development. Moreover, it makes explicit the connection between logical formulas and functional programs. Note
for instance that implication is interpreted as the function space:

semantics : (i : Interp) (p : Form) — Set

semantics i falsity = L

semantics i (pro x) = T (i x)

semantics i (p = ¢) = semantics i p — semantics i g

The function T lifts a boolean to a type that is only inhabited if the boolean is true. As an example, the identity
function witnesses the validity of ¢ — ¢:

semantics-ex2 : ¥ {i p} — semantics i (p = p)
semantics-ex2 = id

The truth of a formula under a given interpretation is a decidable property: we can show that the formula is
either true or that its truth leads to a contradiction:

eval : (i : Id — Bool) (p : Form) — Dec (semantics i p)
eval i falsity = no id

eval i (pro x) with i x

... —false =noid

.. —true = yes tt

evali(p = q)=evalip —-decevalig

Consider the case for pro: the with abstraction refines our goal based on the interpretation of the propositional
symbol. If it is false, the formula is false so we pick the constructor no of the Dec type to reflect this. We then need
to give evidence that given a value of type L, the semantics of the formula in this case, we can produce a value of
type L: the identity function suffices. In the true case we need to give an inhabitant of T of which there is just tt.

The sequent semantics is a function from evidence that All formulas on the left-hand side are true, to evidence
that Any formula on the right-hand side is:

semantics’ : (i : Interp) (I r : List Form) — Set
semantics’ i [ » = All (semantics i) Il — Any (semantics i) r

4 Proof System

In Isabelle/HOL we leave the underlying sequent calculus implicit (unlike Michaelis and Nipkow [21]]). Its defini-
tion in simple type theory makes use of features beyond functional programming. In Agda, however, we can bring
it out as just another datatype. We use the infix constructor _>>_ which takes a list of formulas on both sides, with
the intended interpretation given above. A proof becomes a value of the datatype as constructed by the following

cases (cf. fig.[T):

data >>_: (I r: List Form) — Set where
fls-1: V¥V {lr} — falsity :: > r
imp-l:Vi{pglrl—>I>pr—oq:l>r—-p=q:l>r
imp-r:Vi{pglri—-p:l>qgr—-Il>p=q:r
per-l :Y{l'r} > l>r—lewl’ > U>r
per-r:¥V{lrr}—-l>r—-resr —I>r
basic:V{plri-pul>p:r

Our use of lists makes the proof rules simple to state but means that the ordering matters. The per-l and per-r
constructors allow us to permute the left-hand and right-hand side of the sequent, respectively, with evidence of
type ¢« that the two lists are permutations of each other.



4.1 Soundness

Proofs are now values like any other and lemmas become functional programs that can inspect or produce them. It
is not difficult to prove that the proof system is sound. We refer to the formalization for the two implication cases:

proper: Y {lr}i— [>r— semantics’ ilr

proper i fls-I (() All.:: )

proper i (imp-| sc sc’) = proper-imp-l i (proper i sc) (proper i sc’)
proper i (imp-r sc) = proper-imp-r i (proper i sc)

proper i (per-l sc eq) lhs = proper i sc (All-resp-«~ (evm-sym eq) lhs)
proper i (per-r sc eq) lhs = Any-resp-« eq (proper i sc lhs)

proper i basic (px All.:: ) = here px

The permutation cases follow from the library lemmas All-resp-«~> and Any-resp-«» by passing on the evi-
dence that the two lists are permutations of each other.

4.2 Weakening
We show a weakening lemma on the right-hand side that is useful later:

weaken:VY{lrip—oIl>r—I>p:r

weaken p fls-| = fls-|

weaken p (imp-l sc sc’) = imp-| (per-r (weaken p sc) (swap p _refl)) (weaken p sc’)
weaken p (imp-r sc) = per-r (imp-r (per-r (weaken p sc) (swap p _refl))) (swap _ p refl)
weaken p (per-l sc eq) = per-l (weaken p sc) eq

weaken p (per-r sc eq) = per-r (weaken p sc) (prep p eq)

weaken p basic = per-r basic (swap _ p refl)

We only need to permute the right-hand side occasionally, to make the rules line up and the evidence that they
do so is simple.

5 First Prover

Moving to Isabelle, consider now the first prover:

function ¢ where
(LABPron#C)[l=pum#A)BCI[]|

(WABC (Pron#D)=uAm#B)CD) |

- (L#) =]

(WABC(L#D)=uABCD>|

(WAB((p— @) #C)[1=pABCIplUuAB(g#CO) D]
(MABC(p—-gq#D)=uAB@p#C)(q# D) |

(WA B[][]=C(if set AN set B={}then {A} else {})>

by pat-completeness simp-all

The last two arguments are the two sides of a sequent and the first two are lists of propositional symbols
that we have so far encountered positively and negatively, respectively. The first two cases of the function make
this clear. The return value of the prover is a set of counterexamples: lists of propositional symbols that falsify the
formula when they are interpreted as true and any other symbols interpreted as false. The third case returns no such
lists because if we encounter falsity on the left-hand side, i.e. as an assumption, then the sequent holds trivially.
Similarly, the fourth case simply drops falsity from the right-hand side. The next two cases implement the standard
sequent calculus rules for implication (cf. fig.[T). The last case checks whether a counterexample exists and returns
the information necessary to build one if so. The final line uses a standard method to convince Isabelle/HOL that
our functional program covers all cases for the input (exhaustiveness).



5.1 Termination

To see why u terminates, note that we always remove at least one constructor from either side of the sequent before
recursing. Isabelle/HOL is not sophisticated enough to figure this out automatically, but we can assist it by giving
an explicit decreasing measure that sums the sizes of formulas in the two lists:

termination by (relation < measure (A(-,-,C,D). >, p < C @ D. size p)>) simp-all

In this way, we can have the computer check an otherwise informal argument about our functional program.
Students can even try out different measures and study the cases that fail.

In Agda we take a very different approach after Bove and Capretta [6]] and reify the call graph as an inductive
accessibility predicate:

data mpAcc : (a b : List Id) (¢ d : List Form) — Set where
mp-fls-1 : ¥ a b ¢ — mpAcc a b (falsity :: ¢) []
mp-fls-r: Yabcd— mpAccab cd— mpAcca b c (falsity :: d)
mp-pro-l: ¥ xabc— mpAcc (x::a)bc[] - mpAccab (prox::c)l
mp-pro-r:¥Yxabcd— mpAcca (x::b) cd— mpAccab c (prox::d)
mp-imp-l:Vpgabc—mpAccabc[p]— mpAccab(q:c)[] > mpAccab(p=q:c)l]
mp-imp-r:¥Ypgabcd— mpAccab (p::c)(q::d) - mpAccabc (p=q:d
mp-basic: Y ab — mpAccab ][]

We give a constructor for each case of the recursive function. Values of type mpAcc a b ¢ d are call graphs
for the function when run on those arguments. Since the datatype is inductive, to have a value of it means that
every branch of the recursion eventually reaches the base case, i.e. that the function terminates. As such, we seek
to prove that the type is inhabited for all choices of a, b, c and d.

To start out, we give an explicit size function like the one provided for us in Isabelle:

size : Form - N

size falsity = 1

size (pro ) =1

size (p = q) =1+ size p +size g

We proceed by well-founded recursion which requires us to bundle the arguments into a tuple. The following
abbreviation makes this simpler:

mk-mpAcc : Args — Set
mk-mpAcc (a,b,c,d)=mpAccabcd

We define the same measure as in Isabelle:

SeqToN : Seq » N
SeqToN ([, r) = sum (map size [) + sum (map size r)

We use it to prove the lemma of interest (nested inside ArgsToN):

mpAccTotal : (x : Args) — mk-mpAcc x
mpAccTotal = wfRec - _ go
where
open WFE.Inverselmage {A = Args} {_;_ = _j-} ArgsToN using (wellFounded)
open WEAIl (wellFounded j-wellFounded) using (wfRec)
go : (x: Args) — (Vy — y jArgs x —» mk-mpAcc y) — mk-mpAcc x
go (a, b, falsity :: ¢, []) rec = mp-fls-la b ¢
go(a,b,c,falsity :: d) rec =mp-fls-rabcd
(rec (a, b, c,d) (suc+suc (sum (map size c)) (sum (map size d))))



go(a,b,prox:c,[]) rec=mp-pro-lxabc

(rec (x::a,b,c,[]) (s<s <-refl))
go(a,b,c,prox::d)rec=mp-pro-rxabcd

(rec (a,x::b,c,d) (suc+suc (sum (map size c)) (sum (map size d))))
go(a,b,p=>q:c,[]) rec=mp-imp-lpgabc

(rec (a,b,c,[p]) (s<s (mp1 (size p) (size q))))

(rec (a,b,q::c,[]) (s<s (mp2 (size p) (size q))))
go(a,b,c,p=q:d) rec=mp-imp-rpgabcd

(rec(a,b,p::c,q:d) (mp3(size p) (size q)))
go(a,b,[],[]) rec=mp-basica b

The cases are no different from the ones that arise in Isabelle/HOL, but in Isabelle/HOL we can discharge them
automatically with the simplifier and here we need to prove them manually. It is simply a matter of recursing and
shuffling arithmetical expressions.

Before we define the first prover in Agda we need a helper function to express the base case: evidence that
the two lists of propositional symbols share a common element. We use a dependent sum constructed from a
propositional symbol and a proof that it occurs in both lists:

Shared : (xs ys : List Id) — Set
Sharedxsys = (Xld1e — e €xs X e€ys)

Whether two lists contain a shared element is also a decidable property:

shared : V xs ys — Dec (Shared xs ys)

shared [ ys =no (1 (_, in-[], .) — =Any[] in-[])

shared (x :: xs) ys with x ide? ys

... — NO absent with shared xs ys

... — no disj = no (contraposition (Shared-contract x xs ys absent) disj)
... —Yyes (v, in-xs , in-ys) = yes (v, there in-xs , in-ys)

shared (x :: xs) ys — yes prf=yes (x, here refl , prf)

The Shared-contract lemma drops an element of the first list when given evidence that it does not occur in the
second:

Shared-contract : ¥V x xs ys — — x € ys — Shared (x :: xs) ys — Shared xs ys
Shared-contract x xs ys absent (v , here px , in-ys) rewrite px = L-elim (absent in-ys)
Shared-contract x xs ys absent (v , there in-xs , in-ys) = v , in-xs , in-ys

We then define the first prover in Agda over the mpAcc datatype:

p-acc : ¥ {a b cd} — mpAccab cd— List (List Id)
p-acc (mp-fls-1 - _¢) =]

p-acc (mp-fls-r - _ _ds) = y-acc s

p-acc (mp-pro-lx - _cs) = u-acc s

p-acc (mp-pro-rx ___ds)=p-accs

p-acc (mp-imp-lp g - _c¢ st) = u-acc s ++ p-acc t
p-acc (mp-imp-rp g - - _ds) =pu-accs

p-acc (mp-basic a b) =if | shareda b | then [ else [ a]

In the base case we reduce the evidence produced by shared to a boolean but it is useful to compute it first:
when proving lemmas about p-acc we will need the evidence and the function will then unfold as we want it to.
We obtain the prover itself by composition with mpAccTotal:

p:(ab:Listld) (cd: List Form) — List (List Id)
puabcd=p-acc (mpAccTotal (a, b, c,d))
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Isabelle/HOL automatically defines an induction principle for terminating functions that matches their recur-
sive patterns. We can now prove things in a similar way (without reproving the termination of our lemma), by
induction over the mpAcc datatype. Moreover, we can reuse the termination proof mpAccTotal for the second
prover whereas we prove termination twice in Isabelle/HOL (cf. fig.[2).

5.2 Sound and Complete

In Isabelle/HOL we very easily prove the first prover sound and complete by looking at whether or not it returns a
counterexample:

lemma sat: <sc (map ProA @ C) (map ProB @ D) (An.n€setL)—=L¢uABCD)
by (induct rule: p.induct) auto

theorem main: ((Vi. sc (map Pro A @ C) (map ProB @ D)i) «— uABCD={}»
by (induct rule: u.induct) (auto simp: sat)

5.2.1 Soundness

The Agda story is more complicated. We may start on soundness by noticing that if a formula occurs on both sides
of a sequent then we can find a sequent calculus derivation via the appropriate permutations:

shared> :V{lrip—> (lhs:pel)(rhs:per) > Il>r
shared> p lhs rhs with €-3++ lhs — e-I++ rhs
o — 1,12 I-prf—rl , r2 |, r-prfrewrite l-prf — r-prf =
per-r (per-I basic (ew-sym (shift p 11 12))) (e~-sym (shift p r1 r2))

We can then prove by induction on the call graph that if no counterexamples are returned, there is a derivation
(see the formalization for the proof):

proven-acc : Y {a b cd} — (s: mpAccab cd) (prf: u-acc s =[]) — ¢ ++ map pro a > d ++ map pro b
We compose it with gAccTotal to obtain proven and thereby soundness:

sound:Yabcd— (prf:uabcd=][]) —» V¥ i— semantics’ i (c ++ map pro a) (d ++ map pro b)
sound a b ¢ d prfi = proper i (proven a b ¢ d prf)

5.2.2 Completeness

We have shown that the formula is valid if the first prover returns an empty set. We now consider the other case:
when one or more counterexamples are returned. Our falsifying interpretation is based on list membership where
we reduce the Dec value to a boolean:

counter-sem : List Id — Interp
counter-sema x = | xide? a ]

Again, calculating the evidence and then reducing it to a boolean will be useful in the proofs.
Our task is then to show that the sequent can be falsified by a returned counterexample: if we assume it is
satisfied (assm) then we reach a contradiction:

counter-acc : V{abcd} — (s: mpAccab cd) (xs : ListId) (prf: xs € u-acc s)
— — semantics’ (counter-sem xs) (¢ ++ map pro a) (d ++ map pro b)

counter-acc (mp-fls-I - _¢) xs () assm

counter-acc (mp-fls-r _b _d s) xs prf assm = counter-acc s xs prf A lhs —



11

drop-falsity (d ++ map pro b) (counter-sem xs) (assm lhs)
counter-acc (mp-pro-l x a _ ¢ s) xs prf assm = counter-acc s xs prf A lhs —
assm (All-resp-«w (shift (pro x) ¢ (map pro a)) lhs)
counter-acc (mp-pro-r x _b _d s) xs prf assm = counter-acc s xs prf A lhs —
Any-resp-«w» («r-sym (shift (pro x) d (map pro b))) (assm lhs)
counter-acc (mp-imp-l p g a b ¢ s t) xs prf assm with e-++ (u-acc s) prf — eval (counter-sem xs) p
... —injj in-s — no pf = counter-acc s xs in-s (A lhs — there (assm ((L-elim o pf) All.:: lhs)))
... — inj| in-s — yes pt = counter-acc s xs in-s (const (here pt))
... —injy in-t — _ = counter-acc ¢ xs in-t (A { (gt All.:: lhs) — assm (A - — qt) All.:: lhs) })
counter-acc (mp-imp-r p g a b c d s) xs prf assm = counter-acc s xs prf A { (pt All.:: lhs) —
Any-update (p = ¢q) g (d ++ map pro b) (assm lhs) (_$ pt) }
counter-acc (mp-basic a b) xs prf assm with shared a b
counter-acc (mp-basic a b) xs (here px) assm — no no-common rewrite px =
counter-common a b no-common (assm (counter-lhs [| a))

The first case is trivially absurd since no counterexamples are returned there. In the second case we use the
following lemma to drop a falsity from the right-hand side of a sequent before recursing:

drop-falsity : ¥ [ i — (prf: Any (semantics i) (falsity :: [)) — Any (semantics i) /
drop-falsity /i (there prf) = prf

In the propositional cases we use permutations to shift the symbol w.r.t. the concatenation. The cases for
implication are more interesting. On the left-hand side we look at prf to determine which branch of the recursion
the returned counterexample came from and at the semantics of the antecedent p. If the counterexample came
from the first recursive call (on [p]) then we need to recurse on this side with a proof that the sequent is satisfied
by the counterexample. If p is false under the counterexample then the implication we are working on is satisfied
and we can apply our assumption assm. If the interpretation satisfies p then the sequent we are recursing on is
trivially satisfied, as p occurs on the right-hand side. Finally, if the counterexample emerged from adding ¢ to the
assumptions then we can assume that g holds, in which case the implication does too and we can again appeal to
assm. If the implication occurs on the right-hand side then we can assume from the nature of the recursive call that
p is true and need to show that ¢ is too given our implication. The function Any-update does the “heavy” lifting:

Any-update : {A : Set} {P: A — Set} (vv’: A) (xs : List A)
(prf: Any P (v::xs)) (f: Pv— Pv’) — Any P (v’ :: xs)

Any-update v v’ xs (here pv) f= here (fpv)

Any-update v v’ xs (there prf) f = there prf

We obtain completeness by considering whether or not the first prover returns counterexamples:

complete : Y abcd— (valid : ¥ i — semantics’ i (c ++ map pro a) (d ++ map pro b)) » uabcd =]
complete a b ¢ d valid with case-€ (u a b c d)

.. —injy prf = prf

... —injo (xs, prf) = L-elim (counter a b ¢ d xs prf (valid (counter-sem xs)))

If it does not then we are done and if it does then we use the counter result (derived from counter-acc) to
derive a contradiction from the validity assumption; a classic technique.

6 Second Prover

We now reach the second prover, which returns true or false instead of a list of lists and whose execution is thus
simpler than the first one. Our goal is to show a correspondence with the first prover and thereby easily derive
completeness, which would be harder to prove directly because the prover produces less information. We give
simple definitions to check membership and the existence of a common element in Isabelle/HOL and use them to
define the prover (and prove termination):
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primrec member where
(member - [] = False) |
(member m (n # A) = (if m = n then True else member m A))

primrec common where
Ccommon - [] = False) |
(common A (m # B) = (if member m A then True else common A B))

function mp where

(mpABPron#C)[]=mpmn#A)BCI[]’|

(mpABC (Pron#D)=mpA n#B)CD)|

(mp - - (Falsity # -) [] = True> |

(mpA B C (Falsity#D)=mpABCD) |
(mpABUmppq#C)[]1=(ifmpABC [p]thenmp A B (q#C) ][] else False)) |
(mpABC(Umppqg#D)=mpAB@#C)(q#D)>|

(mp A B[] [] =commonA B>

by pat-completeness simp-all

termination by (relation ¢ measure (A(-,-,C,D). >,p < C @ D. size p)>) simp-all
To define it in Agda we first need equivalents of the functions member and common:

member : (v : Id) (xs : List Id) — Bool
member v [] = false
member v (x :: xs) = if v =P x then true else member v xs

common : (xs ys : List Id) — Bool
common [] ys = false
common (x :: xs) ys = if member x ys then true else common xs ys

The second prover is then extremely simple:

mp-acc : Y {a b ¢ d} — mpAcc a b ¢ d — Bool
mp-acc (mp-fls-1 _ _¢) = true

mp-acc (mp-fls-r  _ _d s) = mp-acc s

mp-acc (mp-pro-l x - _c¢ s) = mp-acc s

mp-acc (mp-pro-r x - _ _d s) = mp-acc s

mp-acc (mp-imp-lp g - _c¢ s ) = mp-acc s A mp-acc ¢
mp-acc (Mmp-imp-rp g - - _d s) = mp-acc s

mp-acc (mp-basic a b) = common a b

As mentioned, we can reuse the termination proof for the first prover:

mp : (a b : List Id) (c d : List Form) — Bool
mp a b ¢ d = mp-acc (mpAccTotal (a, b, ¢, d))

One disadvantage compared to the Isabelle/HOL code (cf. fig.[2) is that we build the mpAccTotal data structure
explicitly to recurse on it. In Isabelle/HOL we have no such middle step.
In Isabelle/HOL we carefully set up correspondences between member, common and their set variants:

lemma member-iff [iff]: ¢tmember m A «—— m € set A)
by (induct A) simp-all

lemma common-iff [iff]: ¢common A B «— set A N set B # {})
by (induct B) simp-all
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This allows us to show the equivalence of the two provers using just the simplifier:

lemma mp-iff [iff]: <mpABCD «— uABCD={})
by (induct rule: p.induct) simp-all

The Agda versions are more complicated. For example, here we prove that if an element is a member of a list
then our function member returns true:

e-member : YV vxs — vexs — T (member v xs)
e-member v .(x :: ) (here {x} px) rewrite to T-= ($) === vx px = it
e-member v .(x :: xs) (there {x} {xs} prf) = T-if-true-else-x (v =% x) (member v xs) (€-member v xs prf)

On the whole, proving the equivalence requires lots of fiddling with the evidence:

puemp-acc:Vi{abcedl — (s: mpAccabcd) — p-accs =[] © T (mp-acc s)

uemp-acce (mp-fls-l - _¢) = record { to = Eq.const it ; from = Eqg.const refl }
puemp-acc (mp-fls-r -~ _d s) = yeomp-acc s

pemp-ace (mp-pro-lx - _c s) = u&mp-acc s

pemp-ace (mp-pro-rx _ - _d s) = p&mp-acc s

puemp-acce (mp-imp-lp g - - ¢ s t) = record
{to = record { ($)_= A empty — from T-A ($)
(to (uemp-acce s) ($) ++-conical’ _ _ empty
, to (uemp-acc 1) ($) ++-conical” _ _empty )
; cong = cong _ }
; from = record { ($)_= A both — []-++-[]
(from (uemp-acc s) ($) proj; (to T-A ($) both))
(from (uemp-acc 1) ($) proj, (to T-A ($) both))
;cong =cong -} }
puemp-ace (mp-imp-r p g - - _d s) = uemp-acce s
puemp-ace (mp-basic a b) with common a b — inspect (common a) b
... — false — PE.[ eq ] rewrite shared-common a b — eq = record
{to =record { ($)_=A();cong=cong_};from=record{ ($)_=A();cong=cong_}}
... —true — PE.[ eq ] rewrite sym (shared-common a b) — eq =
record { to = Eq.const tt ; from = Eq.const refl }

We use function equivalence, <, to show that we can go back and forth between the two provers’ return values.
We use this result to show soundness and completeness of the second prover in the general case:

sound-complete’ : Y a b cd — (¥ i — semantics’ i (c ++ map pro a) (d ++ map pro b)) © T (mpa b c d)
sound-complete’ a b ¢ d = record

{to =record { ($)_= A valid — to (uemp a b ¢ d) {($) complete a b ¢ d valid ; cong = cong _ }

; from =record { ($)_=Asc - sound a b ¢ d (from (uemp a b c d) ($) sc) ;cong =cong _} }

We may boil it down to just a prover for a single formula:

prover : Form — Bool
proverp=mp [ ][] [p]

It is sound and complete (see the formalization for the proof):
sound-complete : V p — (Vi — semantics i p) & T (prover p)

We can use Agda to run the prover on different examples, with natural numbers as propositional symbols:
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mp-ex1 : T (prover $ pro 0 = pro 1 = pro 0)
mp-ex1 =t

mp-ex2 : T (prover $ ((pro 0 = pro 1) = pro 0) = pro 0)
mp-ex2 = it

This concludes our Agda development and we briefly return to Isabelle/HOL in comparison.
We can define a prover in the same way in Isabelle/HOL:

definition < prover p = mp [1[]1 [1 [p]»
This simplifies the soundness and completeness statement:

corollary ( prover p «— (Y i. semantics i p))
unfolding prover-def by (simp flip: main)

In Isabelle/HOL we use the simplifier to run an example. Since the syntax is parametric over the choice of
propositional symbols, we can use the unit type here where there is only one symbol:

proposition ¢ prover ((Pro () » L) —» 1) — Pro ()
by code-simp

The prover is defined as a definition instead of an abbreviation, a distinction that exists in Isabelle/HOL, to
allow for code generation. We expand on this in the following section.

7 Teaching Formally Verified Functional Programming

In our teaching we primarily use Isabelle. An important aspect of this is code generation which turns the verified
functional programs into code in a regular programming language, which is more familiar to the students.

We can run the Agda code via the type checker but we can also export it to Haskell or JavaScript. In
Isabelle/HOL we can use eval instead of code-simp to compile an example to Standard ML and execute it as
such using the integration of Standard ML in Isabelle/HOL. Isabelle/HOL also has code export features that we
can use to generate standalone Standard ML, Haskell, OCaml or Scala code to compile and run on our own. Doing
so turns our formalization effort into an actual executable prover in a regular programming language.

Consider for instance the SML code in fig. 3] which is the result of running the following line in Isabelle:

export_code prover Falsity Pro Imp in SML
This exports the prover program and the formula constructors. There are a few things to note:

o The HOL structure is used to handle polymorphic equality in the style of Haskell’s dictionary translation [[12].
e The auxiliary functions member, common and mp are not exposed outside the Micro_Prover structure.

e The lists in Isabelle are compiled to the native SML lists (and likewise for booleans).

o The form datatype is compiled as expected into an SML datatype.

o The translation preserves the structure of the Isabelle functions.

In fig. @l we provide a prover’ definition that fixes the equality to be SML’s built-in polymorphic equality (the
definition is eta-expanded due to the value restriction in SML). We then run the prover on two small examples, one
that returns false as expected and one that returns true. A similar example in an online editor is shown in fig. [5

Besides running the provers we also ask the students to use the sequent calculus in order to construct the full
proofs. When using lists instead of sets we need contraction and permutation rules to assure that neither the order
nor the multiplicity of occurrences of elements matters. We combine these rules into general so-called set rules
and prove soundness in Isabelle/HOL. Using these rules we cover 4 example proofs in the lecture and the students
construct 4 exercise proofs, with help from the teaching assistant as needed. In the mandatory assignment the
students also construct 4 proofs. We mix shorter and longer proofs as shown in the following overview.



structure HOL : sig

type ’a equal

val eq : ’a equal -> ’a -> ’a -> bool
end = struct

type ’a equal = {equal : ’a -> ’a -> bool};

val equal = #equal :
fun eq A_ a b = equal A_ a b;
end; (*struct HOL¥)

structure Micro_Prover : sig

’a equal -> ’a -> ’a -> bool;

datatype ’a form = Pro of ’a | Falsity | Imp of ’a form * ’a form

val prover : ’'a HOL.equal -> ’a form -> bool

end = struct

datatype ’a form = Pro of ’a | Falsity | Imp of ’a form * ’a form;

fun member A_ uu [] = false
member A_m (n ::

fun common A_ uu [] = false
| common A_ a (m ::

funmp A_ ab (Pron :: c) [] =mp A_ (n ::
mp A_abc (Pron ::d) =mp A_a (n ::
mp A_ uu uv (Falsity :: uw) [] = true
mp A_ a b c (Falsity :: d) =mp A_abcd
mp A_ab (Imp (p, q@) :: o) []=

(ifmp A_ abc [p] thenmp A_ ab (q ::
mp A_abc (Imp (p, q ::
mp A_ ab [] [] = common A_ a b;

fun prover A_ p =mp A_ [1 [1 [1 [pl;

end; (*struct Micro_Prover®)

a) b c []
b) cd

d) =mp A_ab (p ::

a) = (if HOL.eq A_ m n then true else member A_ m a);

b) = (if member A_ m a then true else common A_ a b);

c) [] else false)
o (q::d

Figure 3: Result of exporting the second prover from Isabelle/HOL to SML

Examples p—op
po(p—-q9—q
p—=>q9q—=>q9g—p
p—>—|—|p

Exercises p—o>qg—op
(p—og—-nr->p-o>q9—>p—or
—|p—)—|—|—|p

pNV-p

Assignment p—oqg—-op—oyq
pAp— g —q
PANq—DT1r—> pAT

1 proof step

3 proof steps

4 proof steps

4 proof steps using abbreviation for —

3 proof steps

9 proof steps

3 proof steps using abbreviation for —

1 proof step using abbreviation for — and Vv

1 proof step

5 proof steps using abbreviation for —
7 proof steps using abbreviation for A
10 proof steps using abbreviation for A

15

In the proof steps we count the number of left and right introduction rules as well as the left and right set rules.
The GitHub page contains a number of tautology checkers in Isabelle/HOL similar to the ones presented
here but based on other fragments of propositional logic: conjunction and negation, disjunction and negation, and
negation normal form (NNF). Most of them end with a code export to Haskell (this can easily be inserted if not)

and we have compared the resulting code elsewhere [37].
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open Micro_Prover;

val prover’ = fn fm => prover {equal = fn x => fn y => x =
Pro "q")); (* false *)
*)

prover’
prover’

(Imp (Pro "p",

(Imp (Pro "p", Pro "p")); (* true

y} fm;

Figure 4: Two examples of using the prover in SML

structure HOL : sig
type
val eq :

‘a equal
'a equal -> 'a -> 'a -> bool
end = struct

equal = {equal : 'a -> 'a -> bool}
'a equal -> 'a -> 'a -> bo

type '
val equal = #equal :

) |fun eqA_a b - equal A_a b
end

structure Micro_Prover : sig

datatype 'a form - Pro of 'a | Falsity | Imp of 'a form * 'a form

val prover : 'a HOL.equal -> 'a form -> b

end = struct
datatype 'a form = Pro of 'a | Falsity | Imp of 'a form * 'a form
fun member A_ uu [] = false

| member A_m (n :: a) = (if HOL.eq A_m n then true else member A_m a)

fun common A_ uu [] - fals:
| common A_a (m :: b) = (if member A_m a then true else common A_ a b)

a)becll

b) ¢ d

fanmp A_ab (Pron ::c) [J =mpA_ (n ::
mpA abec (Pron ::d =mpA a (n::

uw) [] = true

mp A uu uv (Falsity ::
mp A_ab c (Falsity :: d) =mpA_abcd

mp A_ab (Imp (p, q) :: c) [] =

(ifmpA abc [pl thenmp A ab (q:: c) [] else false)
mp A abc (Imp (p, @ ::d =mpA ab (p::c) (q::d
I mpA_ ab [l []=commonA ab

fun prover A_ p

mp A [1 [1 [ [p]

end
) |open Micro_Prover

val prover' = fn fm => prover {equal = fn x => fn y => x = y} fm

val example = map prover' [Imp (Pro "p", Pro "g"), Imp (Pro "p", Pro "p")]

b structure HOL = struct
val eq = fn: V ‘a .
type 'a equal = {equal: 'a - 'a » bool};

end;

> structure Micro_Prover = struct

{equal: '*'a equall » '*'a equall » bool} » ‘a » ‘a - bool;

val Pro = Pro: v ‘a . 'a > 'a form;

val Falsity = Falsity: v 'a . 'a form;

val Imp = Imp: V 'a . 'a form * 'a form » 'a form;

val prover = fn: V 'a '*'a HOL.equall . {equal: '*'a HOL.equall » '*'a HOL.equall - bool} - 'a form » bool;

datatype 'a form = {
con Pro = Pro: v 'a . 'a - 'a form;
con Falsity = Falsity: v 'a . 'a form;

con Imp = Imp: v 'a . 'a form * 'a form > 'a form;

Y
end;

> val Pro = Pro: ¥ 'a . 'a > 'a form;

> val Falsity = Falsity: ¥ 'a . 'a form;

> val Imp = Imp: v 'a . ‘a form * 'a form » 'a form;

> val prover = fn: ¥ ‘a 'b . {equal: 'b > 'b > bool} > 'a form > bool;

> datatype 'a form = {

con Pro = Pro: V 'a . 'a - 'a form;

con Falsity = Falsity: v 'a . 'a form;

con Imp = Imp: v ‘a . 'a form * 'a form » 'a form;

b

> val prover' = fn: V ‘a .

> val example = [false, true]: bool List;

‘a form » bool ;

Figure 5: Prover example in the online editor https://sosml.org/

A possible future direction is to consider a prover for a larger set of propositional connectives and see how this
impacts the formalization. Defining connectives in terms of each other leads to fewer cases to consider, but also
makes the prover work on different syntax than the user may be expecting. Starting from a fuller set of connectives
could make this gap smaller. It may also serve as a starting point for considering other logics than classical logic,

where the connectives are not necessarily definable in terms of each other.

For negation normal form (NNF), however, it does not make sense to consider any more connectives. We
include the prover based on NNF in fig. [f] The datatype now only has two constructors, Atom and Op, but each
includes a boolean field. For Afom the boolean specifies whether or not the propositional symbol is negated and
for Op we use true to denote conjunction and false to denote disjunction. The semantics function, now dubbed val,
makes this clear. Since the syntax is simpler, so is the underlying sequent calculus and prover cal. Similarly, the
shift from explicit functions on lists to built-in operations on sets helps the automation. Thus, Isabelle/HOL can
more easily verify the prover’s soundness and completeness. The translation to, say, Haskell becomes less straight-
forward and now relies on a provided set library, but fig.[f|showcases how strong a meta-language Isabelle/HOL is.
We can verify a terminating, sound and complete prover in less than twenty lines of code, including the definitions

of the syntax and semantics and an example.

For future work we want to formalize a similar prover in Agda, but we also want to emphasize the value of
our current approach, where we formalize the proof system as well as the prover. Defining the sequent calculus as
an inductive datatype makes it less abstract, say, in a teaching situation: a proof is just a value of this type! And
having a concrete representation allows us to show properties like soundness or weakening as functions that take

sequent calculus proofs as arguments.
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theory Prover imports Main begin
datatype ‘a form = Atom bool 'a | Op < 'a form> bool < 'a form)

primrec val where
(val i (Atom b n) = (if b then i n else = in)» |
(vali (Opp b q)=(ifbthenvalip AvaliqelsevalipV valigq)>

function cal where
(cale[]=nefste.nesnde) |
(cal e (Atom b n# s) = (if b then cal ({n} U fst e, snd e) s else cal (fst e, snd e U {n}) s)) |
(cale (Oppbqg#s)=(ifbthencale (p#s)ANcale(q#s)elsecale (p#q#s))
by pat-completeness auto termination by (relation (measure (A(-, 5). X, p < s. size p)>) auto

definition « prover p = cal ({}, {}) [p]»
value < prover (Op (Atom True n) False (Atom False n)))

lemma complete: (cal e s «—— (Yi. Ap € set s U Atom True * fst e U Atom False ‘ snd e. val i p))
unfolding bex-Un by (induct rule: cal.induct) (auto split: if-split)

theorem < prover p «— (Yi.val i p)»
unfolding complete prover-def by auto

end

Figure 6: A prover based on negation normal form and sets in Isabelle/HOL

In summary, we emphasize the following observations:

e Both proof assistants are clearly up to the task of formalizing these micro provers but the resulting formal-
izations differ greatly in style.

e The simplifier (simp) and its extension into the classical reasoner (auto) of Isabelle/HOL [40Q] are so power-
ful that by defining the lemmas just right there is hardly any proving left for us to do.

e The Agda experience is very different: we need to manually prove even the simple arithmetic identities that
arise in the termination proof but this also leaves more clues to the workings of the proof.

e Yet, the Agda formalization has a certain simplicity to it because everything is “just” datatypes and corre-
sponding functions.

e These functions may return complicated pieces of evidence for a given proposition but it still feels a lot like
functional programming.

e Working in Isabelle/HOL feels more like theorem proving with its special intelligible semi-automated rea-
soning language, Isar for short [41], in which we write our proofs.

At no point during the Agda formalization did we miss proof by contradiction or similar classical techniques.
Rather, we occasionally felt inclined to move away from booleans entirely in favor of something more construc-
tive and we want to investigate this direction further in future work. We are also interested in formalizing the
same provers in other proof assistants like Coq or Lean with more available automation compared to Agda. Yet
another possibility is to take advantage of the generic Isabelle framework and use a constructive type theory like
Isabelle/CTT instead of Isabelle/HOL.
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8 Conclusion

We have presented a formalization of a decision procedure for propositional logic with termination, soundness and
completeness proofs, contrasting the meta-languages of Isabelle/HOL and Agda.

The Isabelle/HOL formalization was useful in our Agda work but exactly because the automation is so pow-
erful, we sometimes found ourselves manually expanding the Isabelle/HOL proof to better understand the details
and translate them. The Agda version is almost the opposite since every proof term is written out in the text. In
both formalizations, however, the proof state is mostly hidden and it is not always clear what goal a particular
expression solves.

We particularly appreciate the Isabelle/HOL approach and its powerful function package when we need to
prove termination. In Isabelle/HOL the termination proof is independent of the function specification but supplying
a termination proof makes an induction principle and code generation available. In Agda the specification of our
provers is entangled with the termination proof and if we want to export code for our provers we need to verify
that it is optimized away. A future direction is to see whether we can define the provers in a structurally recursive
manner so that Agda can verify their termination automatically. Perhaps sized types can provide a solution [[15]]
but a different calculus is likely necessary.

As mentioned we have used the Isabelle/HOL formalization in our 2020 and 2021 course on automated rea-
soning and functional programming. The time/memory performance of the micro provers is in no way optimal
but we find it a good starting point for student projects to experiment with formalizations and perhaps improve
the decision procedures. Even though the students are familiar with functional programming beforehand, our ap-
proach using formalized provers, and other programs and algorithms, introduces the students to formally verified
functional programming in a proof assistant.

Acknowledgements We thank Jens Carl Moesgard Eschen, Frederik Krogsdal Jacobsen and Alexander Birch
Jensen for comments on the paper and Uma Zalakain and Guillaume Allais for hints with the Agda formalization.
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