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Efficient implementations of sets and maps (dictionaries) are important in computer science, and bal-
anced binary search trees are the basis of the best practical implementations. Pedagogically, however,
they are often quite complicated, especially with respect to deletion. I present complete code (with
justification and analysis not previously available in the literature) for a purely-functional implemen-
tation based on AA trees, which is the simplest treatment of the subject of which I am aware.

1 Introduction

Trees are a fundamental data structure, introduced early in most computer science curricula. They are
easily motivated by the need to store data that is naturally tree-structured (family trees, structured doc-
uments, arithmetic expressions, and programs). We also expose students to the idea that we can impose
tree structure on data that is not naturally so, in order to implement efficient manipulation algorithms.
The typical first example is the binary search tree. However, they are problematic.

Naive insertion and deletion are easy to present in a first course using a functional language (usually
the topic is delayed to a second course if an imperative language is used), but in the worst case, this im-
plementation degenerates to a list, with linear running time for all operations. The solution is to balance
the tree during operations, so that a tree with n nodes has height O(logn). There are many different ways
of doing this, but most are too complicated to present this early in the curriculum, so they are usually
deferred to a later course on algorithms and data structures, leaving a frustrating gap. Furthermore, most
presentations in conventional textbooks avoid recursion in favour of loops, use mutation to implement
local rotations, and often, due to space constraints, present final optimized code rather than intermediate
versions that might aid in understanding.

A purely functional approach to data structures usually facilitates educational discussion, and it
comes close in this case, but does not close the gap. The invariants for red-black trees [5] (an encoding
of 2-3-4 trees, which can be viewed as a special case of B-trees) are difficult to motivate, but the code for
maintaining it in the case of insertion is short and easy to justify, as Okasaki showed [10].

Okasaki’s code for insertion into a red-black tree applies a balance function to each tree constructed
with the result of a recursive call. His compelling contribution was to notice that the heart of the rebal-
ancing function in the case of insertion consists of five cases, each one line long and exhibiting a pleasing
symmetry (the right-hand sides of each case can be made identical). However, he does not handle dele-
tion, with good reason; it is much more complicated.

Stefan Kahrs added code for deletion [8] that is the basis for a Haskell [6] library available through
Hackage [4], but his code is complex, and comes with no explanation. An explanation of related code is
available in a journal paper [7], but his goal in this paper was to use advanced features of the Haskell type
system to enforce invariants, rather than to ease matters for undergraduates. Matthew Might, in a lengthy
blog post, calls code based on Kahrs’s work ported to other languages such as Scala “Byzantine”[9].
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Might tackles the topic from a pedagogical point of view, introducing two new colours (double-black
and negative black) during the deletion phase, a notion of colour arithmetic, customized match expanders
for his Racket [11] implementation, and three code phases (removing, bubbling, rebalancing). This is
probably the best presentation of deletion from red-black trees, but it is still not good enough to close the
gap.

The simplest deletion code known (addition is also simple) is for AA trees, an encoding of 2-3 trees,
named after their creator Arne Andersson. Andersson’s work [2] was published in a conference with a
restriction on page length, and while it is available on his Web site, there is no journal version or longer
exposition. The paper gives the invariants but does not explain how the code maintains them. The code
is written in Pascal; it does use recursion (he apologizes for this to his audience) but it also makes heavy
use of mutation.

Here we will work out a purely functional implementation. To the best of my knowledge, this is the
first publication of a purely-functional treatment of AA trees with complete justification and analysis,
and it is simpler than any of the work cited above.

2 Invariants

As mentioned in the previous section, AA trees are an encoding of 2-3 trees [1]. A 2-3 tree generalizes
a binary tree, a node of which contains one key k, a left subtree with keys less than k, and a right subtree
with keys greater than k. (We assume unique keys, but it is easy to adapt the code to handle duplicates.)
2-3 trees allow ternary nodes containing two keys k1,k2 and three subtrees: a left subtree with keys less
than k1, a middle subtree with keys between k1 and k2, and a right subtree with keys greater than k2. In
contrast to the naive elementary implementation of binary search trees, 2-3 trees do not allow nodes with
a single child, and all leaves are at the same depth.

2-3 trees are a good approach to understanding the concepts behind balanced binary search trees and
help to explain the invariants of both red-black trees and AA trees. However, code implementing them
directly gets complex due to the number of special cases. Consequently, it makes sense to simulate them
by binary search trees. A node in the 2-3 tree is simulated by one or two binary nodes in the AA tree.
Instead of a colour at each node (as is the case with the red-black simulation of 2-3-4 trees), we maintain
the level that the key would be at in the 2-3 tree. An empty tree has level 0, leaves have level 1, their
parents have level 2, and so on. Besides simplifying the code, this also aids students in understanding
how and why invariants need to be maintained.

An AA tree is a binary search tree, and so the code for searching is unchanged from the naive
implementation (as is the case for all balanced binary search tree schemes). To ensure that an AA tree
actually does encode a 2-3 tree, it is necessary to maintain some other invariants as well. In the diagrams
below, a node is labelled with its key, and levels decrease from top to bottom.
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AA1: The left child of a node x has level one less than x.

AA2: The right child of x has the same level (x is a “double” node) or one less (x is a “single” node).

AA3: The right child of the right child of x has level less than x.

AA4: All internal nodes have two children.
The invariants ensure that the height of the AA tree is logarithmic in the number of nodes. In the 2-3

tree being simulated, all internal nodes have two or three children. Internal 2-3 nodes with three children
are simulated by an double AA tree node and its right child.

Leaves of the 2-3 tree may contain one or two values, and all leaves are at the same depth from the
root. This means that the height of the 2-3 tree is logarithmic in the number of nodes. As with red-black
trees, a root-node path in the AA tree is at most twice as long as the corresponding path in the 2-3 tree,
thanks to invariant AA3.

3 Insertion

For brevity, I will use Haskell in this exposition, though nothing in the code requires laziness or static
typing. A Racket implementation (Racket is strict and dynamically typed) is also brief compared to
the other options; it is slightly more verbose than the code presented here due to differences in syntax,
not semantics. We start developing the code using an elementary implementation of binary search trees
without balancing.
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data Bst a = E | T (Bst a) a (Bst a)

-- insertion without balancing

insert :: Ord a => a -> Bst a -> Bst a

insert k E = T E k E

insert x t@(T a y b)

| x<y = T (insert x a) y b))

| x>y = T a y (insert x b)))

| otherwise = t

As with Okasaki’s code for insertion, we will rebalance each tree constructed with the result of a
recursive application. We will split the rebalancing function for AA trees into two two-line helper func-
tions, skew and split, which will also be useful for deletion. (These functions appear in Andersson’s
paper, though in imperative versions that use mutation.) Note the introduction of the integer level argu-
ment for the T data constructor.

data AAt a = E | T Integer (AAt a) a (AAt a)

-- insertion with balancing

insert :: Ord a => a -> AAt a -> AAt a

insert k E = T 1 E k E

insert x t@(T lv a y b)

| x<y = split $ skew $ T lv (insert x a) y b))

| x>y = split $ skew $ T lv a y (insert x b)))

| otherwise = t

In general, a subtree produced as the result of a recursive application of insert may have had the
level of its root increased by one, and means that the tree constructed from it by adding in the unchanged
left or right subtree may not satisfy the invariants.

If the left child of a node is increased by one, it is single (as we will see), and we need the skew

transformation.

skew (T lvx (T lvy a ky b) kx c) | (lvx == lvy) = T lvx a ky (T lvx b kx c)

skew t = t
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But the result of skewing could still be a problem if the former root had a right child at the same
level.

This is also a problem if the right child of a right child at the same level has its level raised.

These situations are handled by the split transformation, which solves the problem by raising the
level of the middle node by one, ensuring that it is single and the parent of the other two nodes.

split (T lvx a kx (T lvy b ky (T lvz c kz d))) | (lvx == lvy) && (lvy == lvz)

= T (lvx+1) (T lvx a kx b) ky (T lvx c kz d)

split t = t

Note that it does not hurt to apply skew and split to trees that do not require those transformations.
This completes the presentation of insertion, which so far is at least as short and understandable as
Okasaki’s, if not more so. The instructor may choose to stop at this point, leaving deletion as a rather
challenging exercise.

4 Deletion

As with insertion, we start with the code for elementary deletion from an unbalanced binary search tree.
The case that is not straightforward occurs if the key to be deleted is in an internal node. In this case, we
can, in effect, move the largest key in the left subtree up to replace the key to be deleted. The dellrg

helper function deletes the largest key in a binary search tree, and produces a tuple of that key and the
new tree.
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-- deletion without balancing

delete :: Ord a => a -> Bst a -> Bst a

delete _ E = E

delete x (T a y b)

| x<y = T (delete x a) y b

| x>y = T a y (delete x b)

delete x (T E y b) = b

delete x (T a y E) = a

delete x (T a y b) = T lv c k b

where (c,k) = dellrg a

dellrg (T a y E) = (a,y)

dellrg (T a y b) = (T a y c, k)

where (c,k) = dellrg b

Deletion from an AA tree is more complex than insertion, and we put all the rebalancing logic into
the adjust function. This does not have to be applied when one child of the key to be deleted is empty,
as the other child is unchanged and must be at level one. But it is applied to trees constructed from the
result of recursive applications, including in the dellrg helper function.

-- deletion with balancing

delete :: Ord a => a -> AAt a -> AAt a

delete _ E = E

delete x (T lv a y b)

| x<y = adjust (T lv (delete x a) y b)

| x>y = adjust (T lv a y (delete x b))

delete x (T lv E y b) = b

delete x (T lv a y E) = a

delete x (T lv a y b) = adjust (T lv c k b)

where (c,k) = dellrg a

dellrg (T lv a y E) = (a,y)

dellrg (T lv a y b) = (T lv a y c, k)

where (c,k) = dellrg b

The code for adjust is complicated, and requires careful case analysis to understand. It is still
shorter and clearer than deletion for any other balanced binary search tree implementation.

First, some helper functions to make the code a bit shorter and clearer. lvl produces the level of the
root of a AA tree, and sngl tests whether the root is single or double.

lvl E = 0

lvl (T lv _ _ _) = lv

sngl E = False

sngl (T _ _ _ E) = True

sngl (T lvx _ _ (T lvy _ _ _)) = lvx > lvy
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How can the invariant be broken by recursive deletion? A child node may have its level lowered.
In general, a node being adjusted may have a child two levels lower (as the result of the child being
constructed using the result of a recursive deletion), which violates the invariant. We might need to drop
the level of such a node.

We are now ready to describe adjust. The easiest case is when each child of the argument tree t

has level no lower than one less than the level of t. In this case, no adjustment is needed.

adjust t@(T lvt lt kt rt) | (lvl lt >= lvt-1) && (lvl rt >= lvt-1) = t

If the right child of t has level two below t, there are two subcases, depending on whether the left
child is single or double. The easier case is when the left child is single.

This is just a skew of t with its level lowered by one.

adjust t@(T lvt lt kt rt) | (lvl rt < lvt-1) && sngl lt = skew (T (lvt-1) lt kt rt)

If the left child of t is double, we need to do a more complicated restructuring.

adjust t@(T lvt lt kt rt) | (lvl rt < lvt-1)

= let (T lvl a kl (T lvb lb kb rb)) = lt

in T (lvb+1) (T lvl a kl lb) kb (T (lvt-1) rb kt rt)

In the remaining cases, the left child of t has level two below t.
If t is single, we can drop its level, but we might have to do a split if its right child is double.

adjust t@(T lvt lt kt rt) | (lvl rt < lvt) = split (T (lvt-1) lt kt rt)

If t is double, then it and its right child are on the same level. We can drop the level of both, but
then we have to fix things up, because this might result in as many as five nodes on the same level and
violations of the invariants. (In the diagram below, a is drawn as double, but it might be single.)
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We can explain the fixing up in terms of skew and split, though we don’t use them in the final code
for this case. We start by naming the various values we need to manipulate, based on the above diagram.

There are two cases, depending on whether a is single or double. First, we consider when a is single.
In this case, a skew followed by a split fixes things up.

If b was originally double, it might need to be split at this point.
The case where a is double is similar, but two skews and two splits are needed, and r ends up at

a different level.

The code for deletion in Andersson’s paper applies mutating skew three times and mutating split
twice, collapsing some cases at the cost of understanding. Rather than do that here, let’s take a look at
the end results of the single and double cases.

These differ only in the level of r. So we compute the new level accordingly, using the nlvl helper
function.

adjust t@(T lvt lt kt rt) | otherwise

= let (T lvr a@(T lva c ka d) kr b) = rt

in T (lva+1) (T (lvt-1) lt kt c) ka (split (T (nlvl a) d kr b))
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nlvl t@(T lv _ _ _) = if sngl t then (lv - 1) else lv

Here is the complete code for adjust, which is just the proper assemblage of the code fragments
presented above.

adjust t@(T lvt lt kt rt)

| (lvl lt >= lvt-1) && (lvl rt >= lvt-1) = t

| (lvl rt < lvt-1) && sngl lt = skew (T (lvt-1) lt kt rt)

| (lvl rt < lvt-1)

= let (T lvl a kl (T lvb lb kb rb)) = lt

in T (lvb+1) (T lvl a kl lb) kb (T (lvt-1) rb kt rt)

| (lvl rt < lvt) = split (T (lvt-1) lt kt rt)

| otherwise

= let (T lvr a@(T lva c ka d) kr b) = rt

in T (lva+1) (T (lvt-1) lt kt c) ka (split (T (nlvl a) d kr b))

5 Conclusions

I use this presentation in a first “advanced level” course on computer science for students with good math-
ematical skills (not necessarily with prior computing experience). It is preceded by an early treatment
of Braun trees [3] (which implement sequences and are the simplest useful data structure demonstrating
logarithmic-depth trees) and of naive elementary binary search trees. When we return to the subject late
in the term, we first discuss 2-3 and 2-3-4 trees, and insertion into red-black trees based on Okasaki’s
version. Deletion from AA trees is the last topic in the course.

Despite the fact that deletion from AA trees is simpler to explain and implement than deletion from
any other flavour of balanced binary search trees, I would not recommend that it be covered in a first
course taken by all computer science majors, or by non-majors. However, it fits well into a second-
course treatment of balanced binary search trees. Even in a course using a conventional imperative
garbage-collected language for code examples, an initial immutable, recursive, functional treatment will
improve students’ understanding of the topic prior to covering the sort of code found in most textbooks
and in library implementations.
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