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This paper describes an ongoing project to create programming activities that can be incorporated
into the high school mathematics curriculum so that eventually they become part of the core instruc-
tion and not just supplementary activities. While our project is in its preliminary stages, we have
developed some material illustrating our approach, which can be described as minimalist. We want
to focus on those parts of programming that are directly related to mathematics lessons and ignore
as much as we can about any other aspect of programming, and in particular about interfaces and
input-output operations. We have run a summer camp and several saturday workshops for middle
and high school students to teach them basic concepts of programming and the connections between
programming and mathematics. We chose to use Haskell for all the instruction due to its similarity
to mathematical language, and our pilot tests showed that students with no previous programming
experience were, after a short time, able to understand and modify the Haskell scripts we gave them.
In fact, most of the difficulty they had was due to poor understanding of the underlying mathematics,
and the programming exercises helped them recognize and, for some students, correct their deficien-
cies. In partnership with our local public school district, we are preparing a schoolwide deployment
of the activities in a magnet high school. The activities will be embedded in the regular Algebra I
and Geometry courses, and if the project is successful, it will be later extended to other high schools
in the district.

1 Introduction

We are trying to address two problems in the curriculum of most high schools in the US.1 First, most
mathematics courses do not use any programming technology beyond graphing calculators, which offer
a limited programming interface in a custom version of BASIC that did not substantially change in the
last 25 years. Second, most schools offer a very limited selection, if any, of computer science courses,
and those courses are usually optional and have low enrollment. In consequence, very few high school
students are exposed to modern high-quality programming languages and tools.

Current efforts to change the high school curriculum to introduce new computer science courses
are not likely to change the underlying problem of the current situation, which is that most students
can graduate high school without having been exposed to any programming experience[60, 83]. Even
programs such as CS10K, a massive program sponsored by the US National Science Foundation, which

1While we are familiar only with the US educational system, we expect similar situations to occur in many other countries.
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2 Haskell in School Math

aims to train ten thousand teachers to teach new computer science courses, will reach at most half the
high schools in the US, and it will still provide programming opportunities in optional, non-core courses.

We are exploring an alternative approach to tackle the problem based on embedding programming
instruction in existing compulsory core subjects. While this approach will guarantee that all students
are exposed to some programming experience during their high school years, it presents some new chal-
lenges of its own. First, the programming exercises must be relevant to the subject in which they are
embedded, as teachers in core subjects do no have much discrectionary time to use for supplementary
activities. Second, the depth of the programming instruction must be suitable for a teacher who may have
never taken any computer science course and who must learn the material in a few professional develop-
ment sessions. Third, the programming environment must have low threshold and high ceiling, so that
simple problems can be easily solved but there is no limit to what a motivated learner or a knowledgeable
teacher can do with it.

Given the previous constraints, we found it natural to choose mathematics as the core subject and
Haskell as the programming language. We also had to keep our goals modest: provide a first exposure
to programming to students so that they decide whether they may want to explore the subject further,
ensure that students are not scared of reading code, get students to make small changes to existing code
and encourage teachers to use code snippets in their regular instruction. In order to keep the programming
as simple as possible, we chose to use only a subset of Haskell without monads, higher-level categorical
interfaces or IO. In fact, while the learning curve for the advanced features of Haskell is allegedly very
steep, the beginning of the curve is flatter than in most mainstream programming languages. Introducing
basic programming concepts in Haskell requires almost no instruction time due to the strong similarity
of the concepts and notation to the algebraic language used in mathematics, and the following informal
rules cover basically all the syntactic differences between Algebra and Haskell:

1. In Algebra, functions have parameters enclosed in parentheses and separated by commas, while in
Haskell, parameters follow the function name separated by spaces with no enclosing symbols.

2. In Haskell, auxiliary definitions that are local to a particular function definition are introduced by
the keyword where and must form a left-aligned block that is indented to the right with respect to
the function definition, while in Algebra, there is no convention for denotating auxiliary definitions.

3. In Haskell, newly introduced symbols must appear on the left-hand side of an equation, while in
Algebra, they may appear on either side.

4. In Algebra, sets are used for two different purposes: to denote the range of possible values for a
symbolic expression and to group several values together as a single entitiy. In Haskell, the former
is done with type annotations while the latter is done with lists. However, sets do no specify the
order of their elements, and duplicate elements are counted only once in sets. On the other hand,
lists maintain the specified order for their elements, and duplicates are kept in lists as many times
as they are listed.

The rest of the paper is organized as follows. Section 2 gives a summary of the pilot tests we ran
and an account of the use of Haskell in the tests. Sections 3, 4 and 5 go into more detail about how
arithmetic, algebra and geometry were used in the pilot tests. Section 6 gives a historical perspective of
similar projects. Finally, section 7 provides concluding remarks and our plans for the future.
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2 Pilot tests

We have run a summer camp and several saturday workshops for middle and high school students to
teach them basic concepts of programming and the connections between programming and mathematics.
Our pilot tests showed that students with no previous programming experience were, after a short time,
able to understand and modify the Haskell scripts we gave them. In fact, most of the difficulty they had
was due to poor understanding of the underlying mathematics, and the programming exercises helped
them recognize and, for some students, correct their deficiencies.

Haskell has a reputation of being a difficult language. Part of the difficulty of Haskell arises from
the somehow rigid syntactic rules regarding layout. In our case, students frequently made trivial syntax
mistakes, but they were able to correct them when told to carefully search for typos and improper inden-
tation. While having to pay attention to such errors was a nuisance for both students and instructors, the
total time lost due to these issues was insignificant compared to the amount of time the students needed
to come up with correct solutions to the problems we posed them.

Other sources of difficulty in Haskell are the constraints on the input-output interface to make it
logically consistent with the rest of the language and the very-high-level categorical constructs that make
it terse and extremely powerful. However, in introductory programming activities such as ours, it is easy
to just avoid both. Our interface was restricted to interactive use of the GHCI interpreter and graphics
based on the Gloss library, which abstracts away all interface details and presents a purely functional
interface. We did not make any use of Applicative or Monad, and in fact we did not introduce the do

notation, and we introduced the composition (.) and application ($) operators as shortcuts to reduce the
number of parentheses without delving into the subtleties of operator precedences or the mechanics of
currying and its relation to evaluating multiple arguments. This approach to teaching Haskell did not
actually produce any confusion or dissonance on the students, who seemed to accept very naturally the
role of composition and application as shortcuts, which in a sense is just what they are.

Even without advanced features, Haskell had a lot to offer. Particularly useful were its referential
integrity, essential for performing equational reasoning, and its lazy evaluation model, which facilitates
the manipulation of infinite objects. While the former is shared with many functional programming
languages, the latter is more particular to Haskell, which is probably the only lazy language that has a
non-negligible active community behind it. In addition, the fact that the syntax for assignments closely
resembles the usual mathematical syntax was essential for a seamless transition between programming
and mathematics that was repeatedly used in all exercises. Other advantages of Haskell that were less
explicitely exploited in our tests but nevertheless played an important role are the strong and rich type
system, always enforcing correctness in the background, and the clear separation between interface pro-
gramming and algorithmic programming, which helped us cleanly delimit which features were allowed
in the programs.

We organized the summer camps before we had an agreement with the school district, and at that
time we were planning on targetting mainly middle school students. However, our pilot tests convinced
us that many middle school students lack the necessary maturity to handle the abstract constructs nor-
mally used in algorithmic programming. Reported success of graphical programming environments
such as Scratch[3] among middle schoolers may be due to the lower abstraction requirements of the
effect-oriented programming encouraged by those environments rather than to the graphical appeal of
the interface. This premise was reinforced by the results of our tests with high school students, who felt
comfortable using just an editor to handle the programs and did not seem to miss a graphical interface.

We will now show three examples of the type of activities we proposed to the students. The first two
examples were done in sessions for middle school students, and the last example was done by high school
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students. These activities focus on areas where the students had either deficiencies in their mathematical
understanding or enough basic understanding to be exposed to enriching instruction, and our goal was
to find whether the deficiencies can be corrected (or the enrichment can be carried out) by having the
students program the underlying mathematics.

3 Arithmetics, Induction and Recursion

Our first pilot test targetted students entering eighth grade. We chose a subject that all of them were
familiar with: arithmetic of natural numbers. We thought that illustrating how to implement the four rules
in a computer could be a good introduction to mathematical induction and to recursion, its programming
counterpart.

Pattern matching, incremental definition of functions and the identification of strings and lists were
some of the useful features of Haskell that were exploited to implement the usual algorithm for addition
using decimal digits, as shown in listing 1. Natural numbers were represented as strings of digits, and list
operations were used to construct and deconstruct them. The students were taught that strings of digits
can be manipulated with these functions: concatenation (++), list construction (using square brackets),
prefix extraction (init) and suffix extraction (last). They were also told that string literals must be
enclosed in double quotes and single digit (character) literals must be enclosed in single quotes. The
definition of the functions next and prev were provided, and the syntax for multiple-case function
definitions was explained. Then the students worked on exercises aimed to practice those constructs, and
finally they were asked to write the definition of the count function and the addition algorithm.

Listing 1: Algorithm for addition using decimal digits.
module NoMath where
import Prelude h id ing ( ( + ) , ( − ) , ( ∗ ) , ( / ) , ( ˆ ) , sqrt , ( < ) , ( <=) , ( > ) , ( >=))

next ” 0 ” = ” 1 ” ; next ” 1 ” = ” 2 ” ; next ” 2 ” = ” 3 ” ; next ” 3 ” = ” 4 ”
next ” 4 ” = ” 5 ” ; next ” 5 ” = ” 6 ” ; next ” 6 ” = ” 7 ” ; next ” 7 ” = ” 8 ”
next ” 8 ” = ” 9 ” ; next ” 9 ” = ” 10 ”

next x | l a s t x == ’9 ’ = next ( i n i t x ) ++ ” 0 ”
| o t h e r w i s e = i n i t x ++ next ( [ l a s t x ] )

p rev ” 10 ” = ” 9 ” ; p rev ” 9 ” = ” 8 ” ; p rev ” 8 ” = ” 7 ” ; p r ev ” 7 ” = ” 6 ”
p rev ” 6 ” = ” 5 ” ; p rev ” 5 ” = ” 4 ” ; p rev ” 4 ” = ” 3 ” ; p r ev ” 3 ” = ” 2 ”
p rev ” 2 ” = ” 1 ” ; p rev ” 1 ” = ” 0 ”

p rev x | l a s t x == ’0 ’ = p rev ( i n i t x ) ++ ” 9 ”
| o t h e r w i s e = i n i t x ++ prev ( [ l a s t x ] )

c o u n t i n i t i a l f i n a l
| i n i t i a l == f i n a l = i n i t i a l
| o t h e r w i s e = i n i t i a l ++” , ”++ c o u n t ( next i n i t i a l ) f i n a l

” 0 ” + x = x ; x + ” 0 ” = x ; x + ” ” = x ; ” ” + x = x

x + y | i n i t x == ” ” = prev x + next y −− x has a s i n g l e d i g i t
| i n i t y == ” ” = next x + prev y −− y has a s i n g l e d i g i t
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| o t h e r w i s e = ( i n i t x + i n i t y + i n i t p ) ++ [ l a s t p ]
where p = [ l a s t x ] + [ l a s t y ]

−− Sample run :
−− ∗NoMath> c o u n t ”73” ”105”
−− ” 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7 8 , 7 9 , 8 0 , 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 , 8 7 , 8 8 , 8 9 , 9 0 , 9 1 , 9 2 , 9 3 , 9 4 ,
−− 9 5 , 9 6 , 9 7 , 9 8 , 9 9 , 1 0 0 , 1 0 1 , 1 0 2 , 1 0 3 , 1 0 4 , 1 0 5 ”
−− ∗NoMath> ”929” + ”741”
−− ”1670”

It took the students about four hours and a half (divided into three sessions of one hour and a half
each) to complete this exercise, and considerable guidance was provided during the sessions, but in the
end, many eighth graders were able to write their own addition function, and even those who did not
come up with their own were able to understand and use what their peers wrote. This was a difficult
exercise, and the students were at times disoriented, given that they were asked for some intellectual
effort very different from what they are usually accustomed to do in regular mathematics classes. After
they completed the exercise, the students were enthusiastic about trying out the functions they wrote. We
were surprised by how delighted they were to add and count up to ridiculously large numbers, compet-
ing among themselves to see who got the largest number on their screens. It seems that they had not
realized before that computers can calculate with numbers in a way that surpases the abilities of any
human, probably because modern uses of computers involve advanced graphics manipulations that re-
quire mathematical knowledge beyond the level of an eighth grader. On the other hand, experiencing this
phenomenon with mathematics that they understand, such as counting and addition, made them aware in
a visible way of the utility of computers as very powerful calculators.

Note how line 2 in listing 1 is used to prevent the students to use the built-in arithmetic operators. The
students were told that this line made the computer forget about arithmetics, so their task was to teach the
computer how to count and add numbers again. This pretend game was initially well accepted, but the
students were still perplexed by the fact that they could not solve the counting problem just by repeatedly
adding one to the input. It seemed that they did not understand the difference between working around a
problem and solving it. This exercise may have been beyond the level of maturity of the typical eighth
grader, and we expect that it will be more effective with older students.

4 Basic Algebraic Expressions

Our second pilot test also targetted middle school students and was about unit conversions.

Listing 2: Unit conversion
f l o z = 1 −− T h i s i s our b a s i c u n i t o f volume measurement

−− These are d e r i v a t i v e u n i t s :
g a l l o n = 4 ∗ q u a r t
q u a r t = 2 ∗ p i n t
p i n t = 2 ∗ cup
cup = 8 ∗ f l o z
t s p = 1 / 3 ∗ t b s p
t b s p = 1 /16 ∗ cup

−− Problem 1: How many t s p are i n 2 p i n t s ?
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s o l u t i o n 1 = (2 ∗ p i n t ) / t s p

−− Problem 2: In g e n e r a l , how many u n i t s are i n some amount ?
c o n v e r t t o u n i t amount = amount / u n i t

As listing 2 illustrates, laziness can be exploited to present relationships between variables in a nat-
ural top-down order that follows logical dependencies instead of the bottom-up order required by eager
evaluation. This example was the first one we gave to eighth grade students, who were not provided with
the solutions to the problems. We guided the students to use equational reasoning repeatedly to arrive to
the expected solution.

First, the students were asked to solve Problem 1 by hand. A typical solution went like this:

One pint is 2 cups.

So, 2 pints are 4 cups.

One cup is 16 tablespoons.

One tablespoon is 3 teaspoons.

So, one cup is 16*3=48 teaspoons

So, 4 cups are 4*48=192 teaspoons.

We then asked the students how did they know that one cup is 16 tablespoons, and more explicitely,
we asked them to write an expression for the number of tablespoons in a cup, which can be obtained by
dividing the volume filled by one cup by the volume filled by one tablespoon:

tbsp_in_a_cup = (1 * cup) / (1 * tbsp) -- by definition

= (1 * cup) / (1 * 1/16 * cup) -- by substitution: tbsp = 1/16 * cup

= 1 / (1 * 1/16) -- by cancelling out cup

= 16 -- by simplifying fractions

We then asked them to write similar expressions for all the derivations which they did by hand before:

-- One pint is 2 cups.

pint = 2 * cup -- given

cup_in_a_pint = 2 -- since pint/cup = 2*cup/cup = 2

-- So, 2 pints are 4 cups.

two_pint = 2 * pint = 2 * 2 * cup = 4 * cup

cup_in_two_pint = 4 -- equivalent expression

-- One cup is 16 tablespoons.

tbsp_in_a_cup = 16 -- by above computation

-- One tablespoon is 3 teaspoons.

tsp_in_a_tbsp = tbsp / tsp = tbsp / (1/3) * tbsp = 3

-- So, one cup is 16*3=48 teaspoons

tsp_in_a_cup = tbsp_in_a_cup * tsp_in_a_tbsp = 16 * 3 = 48

-- So, 4 cups are 4*48=192 teaspoons.

tsp_in_two_pint = cup_in_two_pint * tsp_in_a_cup = 4 * 48 = 192

The point of the exercise was to show the students that equational reasoning works equally in Algebra
and in Haskell. We also wanted to remark the emerging pattern:

number_of_’unit’_in_a_’amount’ = amount / unit

That pattern allows us to write a shorter program to solve Problem 1:
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tsp_in_two_pint = (2 * pint) / tsp

and let the computer do the work for us, which will internally go something like this:

tsp_in_two_pint = (2 * pint) / tsp = (2 * 2 * cup) / tsp = (4 * cup) / (1/3 * tbsp)

= 12 * cup / tbsp = 12 * cup / (1/16 * cup) = 12 * 16 * cup / cup

= 192

Note that the previous expansion may not be the exact expansion performed by the computer, but
due to the referential integrity of Haskell, it does not matter, as the result will not depend on the order
of expansions. In an imperative language, this type of reasoning would be misleading, as it does not
resemble what the computer is actually doing and would not work in general. Executing a Haskell
program is basically letting the computer do the equational substitutions that we would otherwise do by
hand.

We can now convert the informal in_a pattern above into a legal Haskell expression by just using
backticks:

unit ‘in_a‘ amount = amount / unit

which gives us the solution to Problem 2, except that the problem asked for a function named
convert_to, which is straightforward: convert_to = in_a.

In total, students spent about 90 minutes with this example until they were able to come up with
the solution to problem 2. The guidance provided made them understand better the role of reduction to
normal forms in mathematical expressions and how it can be mechanized. It also emphasized the Church
model of computation, which can be summarized by the slogan computation is substitution. Finally, it
reinforced an abstract algebraic view of unit conversions as consisting of a single law (convert_to)
that performs any conversion between two units no matter whether the intermediate units are defined
forwards (a = k*b) or backwards (b = k*a).

5 Euclidean Geometry

The ability to solve problems while operating within the given constraints is essential for both program-
ming and mathematics, but is made more vivid when programming is used to solve a mathematical prob-
lem. Both middle school students and high school students had difficulty understanding constraints, but
this fact was particularly patent when we asked high school students to use dynamic geometry software
2 to perform simple geometric constructions using only the ruler and compass tools.

We originally intended to compare the understanding of high school geometry that can be achieved by
the use of dynamic geometry software with what can be achieved by an approach based on programming
turtle geometry[1]. While observing the students use the dynamic geometry software, we realized that
even some students who had already taken Geometry were not achieving the goals we proposed. Our
observation identified two main reasons. First, the interactive nature of the point and click interface was
distracting, sometimes driving them away from the goal into more open exploration, and most of the
time that exploration was fruitless, which led the students to get frustrated with the software. Second,
their approach to problem solving was too shallow. Instead of trying to get the geometric constructions
based on the constraints they need to satisfy, many students tried to come up with a construction that

2We used GeoGebra in this task, but we do not think the students behavior depended on the particular brand of software
used.
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looked right, but that was not based on constraints and thus did not last when the points were moved. For
example, when we asked them to construct a perpendicular line to a given one without using the built-in
perpendicular tool, instead of delimiting a segment and then constructing the bisector of that segment
using intersection of circles, many students used a free line that cut the given line at an arbitrary point,
and they kept adjusting the incidence angle between the two lines to make it, by trial and error, as close
to 90 degrees as possible. Not only that, but some students had a hard time understanding why that
approach was incorrect and kept insisting they had solved the posed problem.

Listing 3: Euclidean geometry functions
module Geometry where

type Number = F l o a t
type P o i n t = ( Number , Number )

−− a p a r t x y t e l l s whe ther x and y are d i s t i n g u i s h a b l e from each o t h e r
a p a r t : : P o i n t −> P o i n t −> Bool

−− L e t x ’ be t h e p r o j e c t i o n o f p o i n t x on t h e l i n e ab . Then
−− beyond ( a , b ) x t e l l s whe ther p o i n t b l i e s be tween a and x ’ or n o t .
beyond : : ( P o i n t , P o i n t ) −> P o i n t −> Bool

−− I n t e r s e c t i o n be tween l i n e s and c i r c l e s
−− L i n e s are g i v e n by two p o i n t s
−− C i r c l e s are g i v e n by t h e c e n t e r and a p o i n t on t h e c i r c u m f e r e n c e
−− These f u n c t i o n s may produce 0 , 1 or 2 p o i n t s i n r e t u r n

c i r c l e c i r c l e : : ( P o i n t , P o i n t ) −> ( P o i n t , P o i n t ) −> [ P o i n t ]
l i n e c i r c l e : : ( P o i n t , P o i n t ) −> ( P o i n t , P o i n t ) −> [ P o i n t ]
l i n e l i n e : : ( P o i n t , P o i n t ) −> ( P o i n t , P o i n t ) −> [ P o i n t ]

Listing 4: Predicates implementing the betweenness relationship.
o u t s i d e ( a , b ) x = beyond ( a , b ) x | | beyond ( b , a ) x
between ab = not . o u t s i d e ab
a c r o s s x l = not . s a m e s i d e x l

s a m e s i d e x ( y , y ’ ) x ’ | not ( a p a r t y y ’ ) = error ” s a m e s i d e ”
| not ( a p a r t x x ’ ) = True
| o t h e r w i s e = case l i n e l i n e ( x , x ’ ) ( y , y ’ ) of

[ p ] −> not ( be tween ( x , x ’ ) p )
[ ] −> True

This experience, which contradicted previous research on dynamic geometry software[31, 32, 37],
led us to change the design of our sessions. Instead of programming open-ended turtle geometry, we
opted for implementing Euclidean geometry in a library. Our goal was to facilitate a programming model
where it was just impossible to have constructions that look right but were incorrect. In the libraries we
implemented, students have no control over the look, as the system chooses randomly the initial points
on which the construction should be based. There are no instructions in our vocabulary to change the
position of the points or the lines, and the only way to create new points and lines are as intersections
of ruler and compass constructions based on the random input data. The restricted vocabulary helped
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the students enormously to focus their effort on just finding the right constraint. Open exploration is not
hindered in this approach[43], but it takes place in a more parsimonious way, as the students need to
follow the typical program development cycle consisting of design, write, execute, test, debug and repeat
phases. Students can no longer act as users of technology, but are set in the mindframe of producers of
technology.

Figure 1: Script that implements the algorithm in Euclid’s Elements Book I Proposition 2. Given a point
A and a segment BC, construct a segment AE congruent to BC and anchored at A.

Listing 3 shows the basic interface we implemented. We used types minimally and opted not to use
the type system to distinguish between lines and circles. We also followed constructive mathematics
conventions and did not implement point equality. When two points are not apart, it may or may not be
true that they are equal, and no assumptions should be made about that. The simplicity of the interface
came at a cost, as students often confused the arguments and passed a circle when a line was expected
or vice versa, so we are not entirely satisfied with that choice. We will probably introduce different
types for lines and circles in our next version. We also implemented functions to draw points, lines,
segments, circles, and to add labels to points. The interface for those is so straightforward that we will
not spend more time on it. However, those functions were not enough to implement Euclidean geometry
constructions, because intersections of lines and circles may contain two points, which are returned in no
particular order. For certain constructions, we need to be able to choose one of them based on additional
geometric constraints. A predicate that provides a way to order points was implemented in terms of the
beyond function. Once this function is defined, it is easy to also have predicates for outside, between,
sameside and across. Those are shown in listing 4.

Using this library, many problems were posed to students, such as equilateral triangles, squares,
parallelograms, perpendiculars, hexagons, and barycenters, incenters and orthocenters of triangles. Sur-
prisingly, the students, most of whom had already taken Geometry, struggled with the geometry, but
once they understood what needed to be done had no trouble implementing it without help. They were
encouraged to actually use the programming as a way to explore the geometry, but it took them a while to
get accustomed to that idea. At the end of each saturday session, we had students who produced figures
on their own, like saw-toothed polygons and octogonal stars, but the time allotted (about 4.5 hours each
session) was not enough to proceed further. Nevertheless, the students seemed satisfied that they had
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learned a lot of geometry in a relatively short amount of time.
Figure 1 shows an implementation of the algorithm I.2 from Euclid’s Elements, which was given to

the students to follow as an example. Lines 8-17 are just for drawing, and the actual computation is in
lines 18-21. In line 18, the variable points holds an infinite supply of random points. Lazy evaluation
makes this abstraction possible. Then, pattern matching is used to give the names a, b and c to the first
three points in that list. In line 19, the intersection of two circles is computed, which produces two points.
From these two points, point o is chosen in such a way that it lies across the segment (a,b) from point c.
In line 20, the intersection of a line and a circle produces again two points, and point d is chosen as the
point in line (o,b) that is not between o and b. Finally, in line 21, the point d is transported to line (o,a) by
choosing again a point from the two points in the intersection of a circle and a line. Use of betweenness
predicates is essential for this algorithm to be correct, and it is something that is implicit in Euclid’s
construction and easy to overlook when this algorithm is explained informally. The function find, part
of the standard library of Haskell, takes a predicate and a list and returns Just the first point in the given
list that satisfies the given predicate, or Nothing in case no such point exists. We would usually do case
analysis to distinguish those two cases, but in this algorithm we are sure that find always returns a point.

6 Related Work

Papert[25] invented the programming language LOGO as a new tool for teaching mathematics and advo-
cated the use of constructionist discovery[53] using the LOGO language as medium, claiming that trans-
fer of creative thinking from computing to other areas would occur spontaneously. However, empirical
studies by several independent researchers[55, 40] showed no evidence of such transfer. Butterfield[9]
argues that analyses of the failure of LOGO did not separate the technology from the teaching method-
ology. Unguided discovery could have been the cause of failure, a point made by Mayer[43], who
concludes that guided discovery is more effective than pure discovery.

On a somewhat related note, Shon[70] says that experience alone does not necessarily lead to learn-
ing; deliberate reflection on experience is essential. Reflective practice is used mainly in practice-based
professional learning, such as nursing [44], teaching [41] or architecture, but it could also be applied to
the practice of programming. Hazzan[29] proposes following a model for software engineering educa-
tion similar to the studio model in architecture. Reflective practice is also important to avoid ”production
without comprehension” [55], i.e., ”engage in haphazard hacking to seek out a solution” [72], a practice
which is especially unproductive in scientific programming.

When an adequate teaching methodology was used, transfer between LOGO and mathematics was
actually found. McCoy et al[45] point to increased students’ understanding of geometry and variables,
and similar results are cited by others with respect to spatial and and symbolic mental representations
[33], a better understanding of elementary algebra [50], increased problem solving abilities [80], and
better understanding of shape, measurement, symmetry, and arithmetic processes [12]. In addition to the
teaching methodology, many other factors, such as the number of instruction hours, influence the impact
of learning computer programming on learning mathematics [34, 94].

Rich[64] studied the conditions that could favorably influence the occurrence of transfer between two
related disciplines, and coined the term convergent cognition to describe the mutual reinforcement that
takes places when the disciplines are complementary along two dimensions: the declarative-procedural
focus (learning of one subject should be mostly declarative while the other should be mostly procedural)
and the abstract-applied scope (one subject should establish an abstract conceptual framework while the
other should be centered on practical applications.) In this context, programming plays the role of the
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procedural application of the abstract declarative framework learned in mathematics courses.
Palumbo et al[52] also point out that the choice of programming language may be an important factor

determining the type and amount of transfer, and base their argument on studies where instead of LOGO,
other languages such as BASIC or Pascal were used. McCoy et al[45] cite studies based on LOGO,
BASIC, FORTRAN and Pascal where evidence for transfer was found, but with inconclusive results
with respect to the choice of programming language used.

All the programming languages mentioned so far are procedural languages, which are based on se-
quences of commands that instruct the computer to modify the current state of memory, and dynamically
replacing the values that variables represent with new computed values. A different paradigm, functional
programming, uses functions as the basic building block and views a program as a large function built
from composition of many smaller functions, where a function is a deterministic rule to transform input
data into output data, just like a mathematical function does.

Recent studies using functional programming are promising. Schanzer et al[69] have used func-
tional programming successfully for teaching algebra. Advanced variants of functional programming
have also been successfully used in introductory programming courses at the undergraduate level [61].
Functional programming for undergraduates has also been used beyond computer science. Walck[86]
created a curriculum for Computational Physics using Haskell as the medium, because ”the structure of
Newtonian mechanics is clarified by its expression in a language (Haskell) that supports higher order
functions, types and type classes.” Thus, functional programming exhibits the low threshold and high
ceiling property for an easily usable but arbitrarily extensible classroom tool[71].

Schanzer et al[68, 69] attribute the favorable results of their Bootstrap methodology to their use of a
functional language as the medium and to the absence of distracting features. In particular, they claim
that their choice of a text-based interface over a more appealing visual program interface is actually a
design feature, because ”textual syntax is closer to what students must master in mathematics classes”.

Functional programming, which fundamentally depends on the concept of recursion, is also expected
to facilitate the understanding of mathematical induction. Program recursion and mathematical induction
go naturally hand in hand with each other. Recursion is a fundamental construct that is usually considered
difficult to teach, but Ginat et al[26] show that this may be a shortcoming of the mainstream procedural
languages, and they conclude that ”understanding recursion is easier in declarative, abstract levels than
procedural ones”.

Other ongoing efforts to bring programming to high schools are based on Computational Thinking[5,
27, 57, 51], which focuses on the algorithmic, problem-solving part of programming, and on projects
such as CS Unplugged[6], which is based on running the typical CS algorithms without a computer. It is
still too soon to say whether courses based on these ideas work as intended.

In summary, while the idea of bringing mathematics and computing together is rather old, there is still
no clear consensus on how to best exploit their similarity, and the success rate does not still overweight
the failure rate, so we can only hope to slowly add more knowledge points to this simple looking but
difficult to accomplish goal.

7 Conclusion and Future Work

We have shown several examples of an ongoing project that aims to introduce programming exercises
in the standard high school mathematics curriculum. The use of Haskell as the programming language
allowed us to ignore most syntactic concerns and other accessory technical details that accompany the
use of more mainstream languages, except possibly Python, which is similarly succint. However, unlike
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Python, Haskell also offers the ability to freely mix algebra and programming in a single argument, as
the referential integrity of Haskell means that Haskell equations are also equations in the algebraic sense.

We have performed some preliminary pilot tests and are currently under a three-year contract with
our local public school district to develop and deploy the project in actual classrooms. We have addi-
tional modules ready for navigating the syntax tree of an algebraic expression, for performing symbolic
algebra computations, for matrix operations, linear regressions and plotting of functions, including conic
sections. All the modules will be published as open source and will be available in a public repository
(http://github.com/alphalambda/k12math).

In our pilot studies, we did pre- and post-tests and surveys for both motivation towards mathematics
and mathematical knowledge, and while the tests and surveys showed some positive results, they were not
significant enough to be presented. Our sample consisted of a total of 15 middle school students and 10
high school students, which was too small to have a quantitative study done. However, our qualitative as-
sessment shows that this approach has potential but needs a carefully designed progression of scaffolded
activities. We also confirmed our hypothesis about the adequacy of Haskell as the programming lan-
guage to use in this type of settings, where the emphasis is stronger on the teaching of mathematics than
on the teaching of programming, and a language that does not take the focus away from mathematical
thinking is desired. In particular, lazy evaluation is the computation model of hand-written mathemat-
ics, and along with pattern-matching and multiple-case function definitions, it provides a programming
environment that seamlessly integrates with hand-written mathematics with minimal cognitive effort.

Our future plans also include moving the development environment to a Web-based interface, using
either CodeWorld[13] or Blank Canvas[8], since deploying a local compiler in schools is somewhat
problematic given their strict policies on software.
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