
Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions for Computer Science

Students

Marco T. Morazán

Seton Hall University

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Outline

1 Introduction

2 Related Work

3 Regular Expressions in FSM

Binary Numbers

4 Generating Words in the Language De�ned by a Regular

Expression

5 Regular Expression Applications

6 Concluding Remarks

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Introduction

• Let's go beyond a pencil-and-paper formal languages and automata theory
course (without losing rigor)

• Bugs in a pencil-and-paper regular expression are hard to detect

• Hard to prove anything in a buggy regular expression

• A programming-based approach to teaching regular expressions in the �rst
automata theory course using FSM

• All the theory addressed by a traditional non-programming automata theory
course

• Students are engaged by programming regular expressions and by designing
and implementing programs based on regular expressions

• Brings students to the realization that regular expressions are an elegant

way to describe an algorithm for generating members of a language

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Introduction

• Let's go beyond a pencil-and-paper formal languages and automata theory
course (without losing rigor)

• Bugs in a pencil-and-paper regular expression are hard to detect

• Hard to prove anything in a buggy regular expression

• A programming-based approach to teaching regular expressions in the �rst
automata theory course using FSM

• All the theory addressed by a traditional non-programming automata theory
course

• Students are engaged by programming regular expressions and by designing
and implementing programs based on regular expressions

• Brings students to the realization that regular expressions are an elegant

way to describe an algorithm for generating members of a language

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Introduction

• Let's go beyond a pencil-and-paper formal languages and automata theory
course (without losing rigor)

• Bugs in a pencil-and-paper regular expression are hard to detect

• Hard to prove anything in a buggy regular expression

• A programming-based approach to teaching regular expressions in the �rst
automata theory course using FSM

• All the theory addressed by a traditional non-programming automata theory
course

• Students are engaged by programming regular expressions and by designing
and implementing programs based on regular expressions

• Brings students to the realization that regular expressions are an elegant

way to describe an algorithm for generating members of a language

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Introduction

• Let's go beyond a pencil-and-paper formal languages and automata theory
course (without losing rigor)

• Bugs in a pencil-and-paper regular expression are hard to detect

• Hard to prove anything in a buggy regular expression

• A programming-based approach to teaching regular expressions in the �rst
automata theory course using FSM

• All the theory addressed by a traditional non-programming automata theory
course

• Students are engaged by programming regular expressions and by designing
and implementing programs based on regular expressions

• Brings students to the realization that regular expressions are an elegant

way to describe an algorithm for generating members of a language

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• Start with �nite-state automatons and discussion leads to regular
expressions or vice versa

• Depth of their treatment varies a great deal

• Informal de�nition, brie�y discuss an application (e.g., lexical analysis), and
then the equivalence between regular expressions and �nite-state
automatons

• Most textbooks provide a formal de�nition and move the equivalence
between regular expressions and �nite-state automatons

• Using FSM:

1 Formal de�nition: type instance in a PL
2 Examples: examples are executable programs

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• Start with �nite-state automatons and discussion leads to regular
expressions or vice versa

• Depth of their treatment varies a great deal

• Informal de�nition, brie�y discuss an application (e.g., lexical analysis), and
then the equivalence between regular expressions and �nite-state
automatons

• Most textbooks provide a formal de�nition and move the equivalence
between regular expressions and �nite-state automatons

• Using FSM:

1 Formal de�nition: type instance in a PL
2 Examples: examples are executable programs

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• Start with �nite-state automatons and discussion leads to regular
expressions or vice versa

• Depth of their treatment varies a great deal

• Informal de�nition, brie�y discuss an application (e.g., lexical analysis), and
then the equivalence between regular expressions and �nite-state
automatons

• Most textbooks provide a formal de�nition and move the equivalence
between regular expressions and �nite-state automatons

• Using FSM:

1 Formal de�nition: type instance in a PL
2 Examples: examples are executable programs

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• More in-depth treatment motivate regular expressions as a �nite

representation that may be used to describe in�nite languages

• Examples
• Discuss properties: identity properties and simpli�cation
• Word generation

• Using FSM:

• Simpli�cation properties less emphasized
• Examples purposely lead to an algorithm and its

implementation for generating words in a the language
• Embraces that randomness (i.e., nondeterminism) has its

role in computation
• Property-based unit testing to validate any generated word

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• More in-depth treatment motivate regular expressions as a �nite

representation that may be used to describe in�nite languages

• Examples
• Discuss properties: identity properties and simpli�cation
• Word generation

• Using FSM:

• Simpli�cation properties less emphasized
• Examples purposely lead to an algorithm and its

implementation for generating words in a the language
• Embraces that randomness (i.e., nondeterminism) has its

role in computation
• Property-based unit testing to validate any generated word

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• Elaine Rich: More algorithmic, but only pseudo-code

• Word generation is discussed

• Think of any expression that is enclosed in a Kleene star as a loop

• Using FSM:

• Focuses in algorithms and implementation
• Word-generating function is fully implemented based on

the experience students gain from implementing regular
expressions

• Students walk away understanding how to design and
implement a word-generating function for any given regular
expression

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Related Work

• Elaine Rich: More algorithmic, but only pseudo-code

• Word generation is discussed

• Think of any expression that is enclosed in a Kleene star as a loop

• Using FSM:

• Focuses in algorithms and implementation
• Word-generating function is fully implemented based on

the experience students gain from implementing regular
expressions

• Students walk away understanding how to design and
implement a word-generating function for any given regular
expression

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• A regular expression is either:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈Σ
3. (union-regexp r1 r2), where r1 and r2 are regular expressions

4. (concat-regexp r1 r2), where r1 and r2 are regular expressions

5. (kleenestar-regexp r), where r is a regular expression

• Tailor-made error messaging:

> (union-regexp 2 (singleton-regexp 'w))

the input to the regexp #(struct:singleton-regexp w) must be a string

> (union-regexp (empty-regexp) 3)

3 must be a regexp to be a valid second input to union-regexp

> (concat-regexp 3 (empty-regexp))

3 must be a regexp to be a valid first input to concat-regexp 3

> (kleenestar-regexp "A U B")

"A U B" must be a regexp to be a valid input to kleenestar-regexp

• Printing:

> (printable-regexp (union-regexp (singleton-regexp "z")

(union-regexp (singleton-regexp "1")

(singleton-regexp "q"))))

"(z U (1 U q))"

> (printable-regexp (kleenestar-regexp

(concat-regexp (singleton-regexp "a")

(singleton-regexp "b"))))

"(ab)∗"

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• A regular expression is either:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈Σ
3. (union-regexp r1 r2), where r1 and r2 are regular expressions

4. (concat-regexp r1 r2), where r1 and r2 are regular expressions

5. (kleenestar-regexp r), where r is a regular expression

• Tailor-made error messaging:

> (union-regexp 2 (singleton-regexp 'w))

the input to the regexp #(struct:singleton-regexp w) must be a string

> (union-regexp (empty-regexp) 3)

3 must be a regexp to be a valid second input to union-regexp

> (concat-regexp 3 (empty-regexp))

3 must be a regexp to be a valid first input to concat-regexp 3

> (kleenestar-regexp "A U B")

"A U B" must be a regexp to be a valid input to kleenestar-regexp

• Printing:

> (printable-regexp (union-regexp (singleton-regexp "z")

(union-regexp (singleton-regexp "1")

(singleton-regexp "q"))))

"(z U (1 U q))"

> (printable-regexp (kleenestar-regexp

(concat-regexp (singleton-regexp "a")

(singleton-regexp "b"))))

"(ab)∗"

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• A regular expression is either:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈Σ
3. (union-regexp r1 r2), where r1 and r2 are regular expressions

4. (concat-regexp r1 r2), where r1 and r2 are regular expressions

5. (kleenestar-regexp r), where r is a regular expression

• Tailor-made error messaging:

> (union-regexp 2 (singleton-regexp 'w))

the input to the regexp #(struct:singleton-regexp w) must be a string

> (union-regexp (empty-regexp) 3)

3 must be a regexp to be a valid second input to union-regexp

> (concat-regexp 3 (empty-regexp))

3 must be a regexp to be a valid first input to concat-regexp 3

> (kleenestar-regexp "A U B")

"A U B" must be a regexp to be a valid input to kleenestar-regexp

• Printing:

> (printable-regexp (union-regexp (singleton-regexp "z")

(union-regexp (singleton-regexp "1")

(singleton-regexp "q"))))

"(z U (1 U q))"

> (printable-regexp (kleenestar-regexp

(concat-regexp (singleton-regexp "a")

(singleton-regexp "b"))))

"(ab)∗"

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• The FSM selector functions for sub regular expressions are:

• Predicates:

empty-regexp? singleton-regexp? kleenestar-regexp?

union-regexp? concat-regexp?

• Function Template:

;; regexp . . . → . . .
;; Purpose: . . .
(define (f-on-regexp rexp . . .)
(cond [(empty-regexp? rexp) . . .]

[(singleton-regexp? rexp) . . .(singleton-regexp-a rexp). . .]
[(kleenestar-regexp? rexp)

. . .(f-on-regexp (kleenestar-regexp-r1 rexp)). . .]
[(union-regexp? rexp)

. . .(f-on-regexp (union-regexp-r1 rexp)). . .

. . .(f-on-regexp (union-regexp-r2 rexp)). . .]
[else . . .(f-on-regexp (concat-regexp-r1 rexp)). . .

. . .(f-on-regexp (concat-regexp-r2 rexp)). . .]))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• The FSM selector functions for sub regular expressions are:

• Predicates:

empty-regexp? singleton-regexp? kleenestar-regexp?

union-regexp? concat-regexp?

• Function Template:

;; regexp . . . → . . .
;; Purpose: . . .
(define (f-on-regexp rexp . . .)
(cond [(empty-regexp? rexp) . . .]

[(singleton-regexp? rexp) . . .(singleton-regexp-a rexp). . .]
[(kleenestar-regexp? rexp)

. . .(f-on-regexp (kleenestar-regexp-r1 rexp)). . .]
[(union-regexp? rexp)

. . .(f-on-regexp (union-regexp-r1 rexp)). . .

. . .(f-on-regexp (union-regexp-r2 rexp)). . .]
[else . . .(f-on-regexp (concat-regexp-r1 rexp)). . .

. . .(f-on-regexp (concat-regexp-r2 rexp)). . .]))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expressions in FSM

• The FSM selector functions for sub regular expressions are:

• Predicates:

empty-regexp? singleton-regexp? kleenestar-regexp?

union-regexp? concat-regexp?

• Function Template:

;; regexp . . . → . . .
;; Purpose: . . .
(define (f-on-regexp rexp . . .)
(cond [(empty-regexp? rexp) . . .]

[(singleton-regexp? rexp) . . .(singleton-regexp-a rexp). . .]
[(kleenestar-regexp? rexp)

. . .(f-on-regexp (kleenestar-regexp-r1 rexp)). . .]
[(union-regexp? rexp)

. . .(f-on-regexp (union-regexp-r1 rexp)). . .

. . .(f-on-regexp (union-regexp-r2 rexp)). . .]
[else . . .(f-on-regexp (concat-regexp-r1 rexp)). . .

. . .(f-on-regexp (concat-regexp-r2 rexp)). . .]))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0

• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Compare:

BIN-NUMS = {w | w is a binary number without leading zeroes}

→ What is a bin num?

BIN-NUMS = (0 ∪ 1(0 ∪ 1)∗) → How to construct a bin num?

• DESIGN IDEA

• Simplify discussion: maximum length is 10

• Generate 0 with a 0.01 probability

• If 0 is not generated: �rst element is 1 and rest contains at most 9 binary
digits

• Represent using a list

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading

;; zeroes of length ≤ MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)
.
.
.

. . .)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Compare:

BIN-NUMS = {w | w is a binary number without leading zeroes}

→ What is a bin num?

BIN-NUMS = (0 ∪ 1(0 ∪ 1)∗) → How to construct a bin num?

• DESIGN IDEA

• Simplify discussion: maximum length is 10

• Generate 0 with a 0.01 probability

• If 0 is not generated: �rst element is 1 and rest contains at most 9 binary
digits

• Represent using a list

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading

;; zeroes of length ≤ MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)
.
.
.

. . .)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Compare:

BIN-NUMS = {w | w is a binary number without leading zeroes}

→ What is a bin num?

BIN-NUMS = (0 ∪ 1(0 ∪ 1)∗) → How to construct a bin num?

• DESIGN IDEA

• Simplify discussion: maximum length is 10

• Generate 0 with a 0.01 probability

• If 0 is not generated: �rst element is 1 and rest contains at most 9 binary
digits

• Represent using a list

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading

;; zeroes of length ≤ MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)
.
.
.

. . .)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Tests
• Due to randomness, test that the generated words have the expected

properties

• 1 w is a list
2 1 ≤ (length w)

3 w is '(0) or (first w) is 1
4 w only contains 0s and 1s

• ;; word → Boolean

;; Purpose: Test if the given word is in L(BIN-NUMS)

(define (is-bin-nums? w)

(and (list? w)

(<= 1 (length w))

(or (equal? w '(0)) (= (first w) 1))

(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? '()) #f)

(check-equal? (is-bin-nums? '(0 0 0 1 1 0 1 0)) #f)

(check-equal? (is-bin-nums? '(0)) #t)

(check-equal? (is-bin-nums? '(1 0 0 1 0 1 1)) #t)

(check-equal? (is-bin-nums? '(1 1 1 0 1 0 0 0 1 1 0 1)) #t)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Tests
• Due to randomness, test that the generated words have the expected

properties

• 1 w is a list
2 1 ≤ (length w)

3 w is '(0) or (first w) is 1
4 w only contains 0s and 1s

• ;; word → Boolean

;; Purpose: Test if the given word is in L(BIN-NUMS)

(define (is-bin-nums? w)

(and (list? w)

(<= 1 (length w))

(or (equal? w '(0)) (= (first w) 1))

(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? '()) #f)

(check-equal? (is-bin-nums? '(0 0 0 1 1 0 1 0)) #f)

(check-equal? (is-bin-nums? '(0)) #t)

(check-equal? (is-bin-nums? '(1 0 0 1 0 1 1)) #t)

(check-equal? (is-bin-nums? '(1 1 1 0 1 0 0 0 1 1 0 1)) #t)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• Tests
• Due to randomness, test that the generated words have the expected

properties

• 1 w is a list
2 1 ≤ (length w)

3 w is '(0) or (first w) is 1
4 w only contains 0s and 1s

• ;; word → Boolean

;; Purpose: Test if the given word is in L(BIN-NUMS)

(define (is-bin-nums? w)

(and (list? w)

(<= 1 (length w))

(or (equal? w '(0)) (= (first w) 1))

(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? '()) #f)

(check-equal? (is-bin-nums? '(0 0 0 1 1 0 1 0)) #f)

(check-equal? (is-bin-nums? '(0)) #t)

(check-equal? (is-bin-nums? '(1 0 0 1 0 1 1)) #t)

(check-equal? (is-bin-nums? '(1 1 1 0 1 0 0 0 1 1 0 1)) #t)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• (check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

• Although the tests all look the same they are not the same test

• Recall that (generate-bn) is nondeterministic

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading zeroes of

;; length <= MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)

• ;; → bit

;; Purpose: Generate a random bit

(define (generate-bit) (if (< (random) 0.5) 0 1))

• ;; natnum → BIN-NUMS

;; Purpose: Generate a random word of bits of the given length

(define (generate-0U1* n)

(if (= n 0)

'()

(cons (generate-bit) (generate-0U1* (sub1 n)))))

• (if (< (random) 0.01)

(list 0)

(cons 1 (generate-0U1* (random MAX-LENGTH)))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading zeroes of

;; length <= MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)

• ;; → bit

;; Purpose: Generate a random bit

(define (generate-bit) (if (< (random) 0.5) 0 1))

• ;; natnum → BIN-NUMS

;; Purpose: Generate a random word of bits of the given length

(define (generate-0U1* n)

(if (= n 0)

'()

(cons (generate-bit) (generate-0U1* (sub1 n)))))

• (if (< (random) 0.01)

(list 0)

(cons 1 (generate-0U1* (random MAX-LENGTH)))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading zeroes of

;; length <= MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)

• ;; → bit

;; Purpose: Generate a random bit

(define (generate-bit) (if (< (random) 0.5) 0 1))

• ;; natnum → BIN-NUMS

;; Purpose: Generate a random word of bits of the given length

(define (generate-0U1* n)

(if (= n 0)

'()

(cons (generate-bit) (generate-0U1* (sub1 n)))))

• (if (< (random) 0.01)

(list 0)

(cons 1 (generate-0U1* (random MAX-LENGTH)))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Programming with Regular

Expressions
Generating BIN-NUMS

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading zeroes of

;; length <= MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)

• ;; → bit

;; Purpose: Generate a random bit

(define (generate-bit) (if (< (random) 0.5) 0 1))

• ;; natnum → BIN-NUMS

;; Purpose: Generate a random word of bits of the given length

(define (generate-0U1* n)

(if (= n 0)

'()

(cons (generate-bit) (generate-0U1* (sub1 n)))))

• (if (< (random) 0.01)

(list 0)

(cons 1 (generate-0U1* (random MAX-LENGTH)))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words

• Generalize to generate an arbitrary word in the language of an arbitrary
regular expression

• To simplify: a constant is de�ned for the maximum number of repetitions
when generating a word from a kleenestar-regexp

(define MAX-KLEENESTAR-REPS 20)

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]

• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]
• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]
• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]
• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]
• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]

• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]
• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]
• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]
• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]
• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]

• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]
• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]
• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]
• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]
• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]

• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]
• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]
• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]
• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]
• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• To illustrate the use of regular expressions we explore the problem of
generating passwords

• A password is a string that:

• Has length ≥ 10
• Includes at least one of each: lowercase letter, uppercase

letter, and special character (i.e., $, &, !, and *)
• Based on this de�nition, the sets for lowercase letters, uppercase letters,

and special characters are de�ned as follows:

(define lowers '(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define uppers '(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z))

(define spcls '($ & ! *))

• The corresponding sets of regular expressions are de�ned as:

(define lc (map (λ (lcl) (singleton-regexp (symbol->string lcl))) lowers))

(define uc (map (λ (ucl) (singleton-regexp (symbol->string ucl))) uppers))

(define spc (map (λ (sc) (singleton-regexp (symbol->string sc))) spcls))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• To illustrate the use of regular expressions we explore the problem of
generating passwords

• A password is a string that:

• Has length ≥ 10
• Includes at least one of each: lowercase letter, uppercase

letter, and special character (i.e., $, &, !, and *)

• Based on this de�nition, the sets for lowercase letters, uppercase letters,
and special characters are de�ned as follows:

(define lowers '(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define uppers '(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z))

(define spcls '($ & ! *))

• The corresponding sets of regular expressions are de�ned as:

(define lc (map (λ (lcl) (singleton-regexp (symbol->string lcl))) lowers))

(define uc (map (λ (ucl) (singleton-regexp (symbol->string ucl))) uppers))

(define spc (map (λ (sc) (singleton-regexp (symbol->string sc))) spcls))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• To illustrate the use of regular expressions we explore the problem of
generating passwords

• A password is a string that:

• Has length ≥ 10
• Includes at least one of each: lowercase letter, uppercase

letter, and special character (i.e., $, &, !, and *)
• Based on this de�nition, the sets for lowercase letters, uppercase letters,

and special characters are de�ned as follows:

(define lowers '(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define uppers '(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z))

(define spcls '($ & ! *))

• The corresponding sets of regular expressions are de�ned as:

(define lc (map (λ (lcl) (singleton-regexp (symbol->string lcl))) lowers))

(define uc (map (λ (ucl) (singleton-regexp (symbol->string ucl))) uppers))

(define spc (map (λ (sc) (singleton-regexp (symbol->string sc))) spcls))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• There are six di�erent orderings these required elements may appear in
(with arbitrary elements in between)

L U S U L S S U L L S U U S L S L U

• Each de�nes a language

• Union regular expression needed for each group of elements:

(define LOWER (create-union-regexp lc))

(define UPPER (create-union-regexp uc))

(define SPCHS (create-union-regexp spc))

(define ARBTRY (kleenestar-regexp

(union-regexp LOWER (union-regexp UPPER SPCHS))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• There are six di�erent orderings these required elements may appear in
(with arbitrary elements in between)

L U S U L S S U L L S U U S L S L U

• Each de�nes a language

• Union regular expression needed for each group of elements:

(define LOWER (create-union-regexp lc))

(define UPPER (create-union-regexp uc))

(define SPCHS (create-union-regexp spc))

(define ARBTRY (kleenestar-regexp

(union-regexp LOWER (union-regexp UPPER SPCHS))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications
• Regular expressions for each of the six languages:

(define LUS (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp ARBTRY

(concat-regexp SPCHS ARBTRY)))))))

(define LSU (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp ARBTRY

(concat-regexp UPPER ARBTRY)))))))

.

.

.

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The language of passwords is a word in any of the languages de�ned for the
di�erent orderings of required elements:

(define PASSWD (union-regexp

LUS

(union-regexp

LSU

(union-regexp

SLU

(union-regexp SUL

(union-regexp USL ULS))))))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The constructor for a password takes no input and returns a string

• A word is generated by applying gen-regexp-word to PASSWD and
converted to a string

• If the length of the string is greater than or equal to 10 then it is returned
as the generated password. Otherwise, a new password is generated.

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The constructor for a password takes no input and returns a string

• A word is generated by applying gen-regexp-word to PASSWD and
converted to a string

• If the length of the string is greater than or equal to 10 then it is returned
as the generated password. Otherwise, a new password is generated.

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The constructor for a password takes no input and returns a string

• A word is generated by applying gen-regexp-word to PASSWD and
converted to a string

• If the length of the string is greater than or equal to 10 then it is returned
as the generated password. Otherwise, a new password is generated.

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• ;; → string

;; Purpose: Generate a valid password

(define (generate-password)

(let [(new-passwd (passwd->string (gen-regexp-word PASSWD)))]

(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

• ;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

• (check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• ;; → string

;; Purpose: Generate a valid password

(define (generate-password)

(let [(new-passwd (passwd->string (gen-regexp-word PASSWD)))]

(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

• ;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

• (check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• ;; → string

;; Purpose: Generate a valid password

(define (generate-password)

(let [(new-passwd (passwd->string (gen-regexp-word PASSWD)))]

(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

• ;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

• (check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The students run the program and con�rm that all the tests pass

• Students are encouraged to generate a few passwords:

> (generate-password)

"&&!$m*F!&$*"

> (generate-password)

"!e*e!*oS!lq$"

> (generate-password)

"!y*$r!C&*d$"

> (generate-password)

"&&!prUA*"

> (generate-password)

"W&*!eKY**D"

> (generate-password)

"vxY*We!Wx*&&u"

• Students feel a sense of accomplishment seeing the results: robust
passwords

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The students run the program and con�rm that all the tests pass

• Students are encouraged to generate a few passwords:

> (generate-password)

"&&!$m*F!&$*"

> (generate-password)

"!e*e!*oS!lq$"

> (generate-password)

"!y*$r!C&*d$"

> (generate-password)

"&&!prUA*"

> (generate-password)

"W&*!eKY**D"

> (generate-password)

"vxY*We!Wx*&&u"

• Students feel a sense of accomplishment seeing the results: robust
passwords

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Concluding Remarks

• Didactic approach for introducing students to regular expressions

• Work presented emphasizes algorithm design and implementation to keep
Computer Science students motivated and engaged

• Most students comment that the password-generating approach is like
nothing they had thought about before

• Future work will address creating a database of examples instructors and
students may draw upon for practice or presentation

• The goal is to have a diverse set of examples

• In addition, extensions to FSM are being considered: a primitive to generate
words in the language of a given regular expression?

• Thank you! Any questions?

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Concluding Remarks

• Didactic approach for introducing students to regular expressions

• Work presented emphasizes algorithm design and implementation to keep
Computer Science students motivated and engaged

• Most students comment that the password-generating approach is like
nothing they had thought about before

• Future work will address creating a database of examples instructors and
students may draw upon for practice or presentation

• The goal is to have a diverse set of examples

• In addition, extensions to FSM are being considered: a primitive to generate
words in the language of a given regular expression?

• Thank you! Any questions?

Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Concluding Remarks

• Didactic approach for introducing students to regular expressions

• Work presented emphasizes algorithm design and implementation to keep
Computer Science students motivated and engaged

• Most students comment that the password-generating approach is like
nothing they had thought about before

• Future work will address creating a database of examples instructors and
students may draw upon for practice or presentation

• The goal is to have a diverse set of examples

• In addition, extensions to FSM are being considered: a primitive to generate
words in the language of a given regular expression?

• Thank you! Any questions?

	Introduction
	Related Work
	Regular Expressions in FSM
	Binary Numbers

	Generating Words in the Language Defined by a Regular Expression
	Regular Expression Applications
	Concluding Remarks

