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Introduction

• Let's go beyond a pencil-and-paper formal languages and automata theory
course (without losing rigor)

• Bugs in a pencil-and-paper regular expression are hard to detect

• Hard to prove anything in a buggy regular expression

• A programming-based approach to teaching regular expressions in the �rst
automata theory course using FSM

• All the theory addressed by a traditional non-programming automata theory
course

• Students are engaged by programming regular expressions and by designing
and implementing programs based on regular expressions

• Brings students to the realization that regular expressions are an elegant

way to describe an algorithm for generating members of a language
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Related Work

• Start with �nite-state automatons and discussion leads to regular
expressions or vice versa

• Depth of their treatment varies a great deal

• Informal de�nition, brie�y discuss an application (e.g., lexical analysis), and
then the equivalence between regular expressions and �nite-state
automatons

• Most textbooks provide a formal de�nition and move the equivalence
between regular expressions and �nite-state automatons

• Using FSM:

1 Formal de�nition: type instance in a PL
2 Examples: examples are executable programs
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Related Work

• More in-depth treatment motivate regular expressions as a �nite

representation that may be used to describe in�nite languages

• Examples
• Discuss properties: identity properties and simpli�cation
• Word generation

• Using FSM:

• Simpli�cation properties less emphasized
• Examples purposely lead to an algorithm and its

implementation for generating words in a the language
• Embraces that randomness (i.e., nondeterminism) has its

role in computation
• Property-based unit testing to validate any generated word
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Related Work

• Elaine Rich: More algorithmic, but only pseudo-code

• Word generation is discussed

• Think of any expression that is enclosed in a Kleene star as a loop

• Using FSM:

• Focuses in algorithms and implementation
• Word-generating function is fully implemented based on

the experience students gain from implementing regular
expressions

• Students walk away understanding how to design and
implement a word-generating function for any given regular
expression
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Regular Expressions in FSM

• A regular expression is either:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈Σ
3. (union-regexp r1 r2), where r1 and r2 are regular expressions

4. (concat-regexp r1 r2), where r1 and r2 are regular expressions

5. (kleenestar-regexp r), where r is a regular expression

• Tailor-made error messaging:

> (union-regexp 2 (singleton-regexp 'w))

the input to the regexp #(struct:singleton-regexp w) must be a string

> (union-regexp (empty-regexp) 3)

3 must be a regexp to be a valid second input to union-regexp

> (concat-regexp 3 (empty-regexp))

3 must be a regexp to be a valid first input to concat-regexp 3

> (kleenestar-regexp "A U B")

"A U B" must be a regexp to be a valid input to kleenestar-regexp

• Printing:

> (printable-regexp (union-regexp (singleton-regexp "z")

(union-regexp (singleton-regexp "1")

(singleton-regexp "q"))))

"(z U (1 U q))"

> (printable-regexp (kleenestar-regexp

(concat-regexp (singleton-regexp "a")

(singleton-regexp "b"))))

"(ab)∗"
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Regular Expressions in FSM

• The FSM selector functions for sub regular expressions are:

• Predicates:

empty-regexp? singleton-regexp? kleenestar-regexp?

union-regexp? concat-regexp?

• Function Template:

;; regexp . . . → . . .
;; Purpose: . . .
(define (f-on-regexp rexp . . .)
(cond [(empty-regexp? rexp) . . .]

[(singleton-regexp? rexp) . . .(singleton-regexp-a rexp). . .]
[(kleenestar-regexp? rexp)

. . .(f-on-regexp (kleenestar-regexp-r1 rexp)). . .]
[(union-regexp? rexp)

. . .(f-on-regexp (union-regexp-r1 rexp)). . .

. . .(f-on-regexp (union-regexp-r2 rexp)). . .]
[else . . .(f-on-regexp (concat-regexp-r1 rexp)). . .

. . .(f-on-regexp (concat-regexp-r2 rexp)). . .]))
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Programming with Regular

Expressions
Binary Numbers

• BIN-NUMS = {w | w is a binary number without leading zeroes}

• 1 Σ = {0 1}

2 The minimum length of a binary number is 1
3 A binary number with a length greater than 1 cannot start

with 0
• (define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

• (define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

• (define STARTS1 (concat-regexp ONE 0U1*))

• (define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")
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Programming with Regular

Expressions
Generating BIN-NUMS

• Compare:

BIN-NUMS = {w | w is a binary number without leading zeroes}

→ What is a bin num?

BIN-NUMS = (0 ∪ 1(0 ∪ 1)∗) → How to construct a bin num?

• DESIGN IDEA

• Simplify discussion: maximum length is 10

• Generate 0 with a 0.01 probability

• If 0 is not generated: �rst element is 1 and rest contains at most 9 binary
digits

• Represent using a list

• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading

;; zeroes of length ≤ MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)
.
.
.

. . .)
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Programming with Regular

Expressions
Generating BIN-NUMS

• Tests
• Due to randomness, test that the generated words have the expected

properties

• 1 w is a list
2 1 ≤ (length w)

3 w is '(0) or (first w) is 1
4 w only contains 0s and 1s

• ;; word → Boolean

;; Purpose: Test if the given word is in L(BIN-NUMS)

(define (is-bin-nums? w)

(and (list? w)

(<= 1 (length w))

(or (equal? w '(0)) (= (first w) 1))

(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? '()) #f)

(check-equal? (is-bin-nums? '(0 0 0 1 1 0 1 0)) #f)

(check-equal? (is-bin-nums? '(0)) #t)
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• Due to randomness, test that the generated words have the expected

properties
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2 1 ≤ (length w)

3 w is '(0) or (first w) is 1
4 w only contains 0s and 1s
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Generating BIN-NUMS

• (check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

• Although the tests all look the same they are not the same test

• Recall that (generate-bn) is nondeterministic
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• ;; → BIN-NUMS

;; Purpose: Generate a binary number without leading zeroes of

;; length <= MAX-LENGTH

(define (generate-bn)

(define MAX-LENGTH 10)

• ;; → bit

;; Purpose: Generate a random bit

(define (generate-bit) (if (< (random) 0.5) 0 1))

• ;; natnum → BIN-NUMS

;; Purpose: Generate a random word of bits of the given length

(define (generate-0U1* n)

(if (= n 0)

'()

(cons (generate-bit) (generate-0U1* (sub1 n)))))

• (if (< (random) 0.01)

(list 0)

(cons 1 (generate-0U1* (random MAX-LENGTH)))))
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Generating Words

• Generalize to generate an arbitrary word in the language of an arbitrary
regular expression

• To simplify: a constant is de�ned for the maximum number of repetitions
when generating a word from a kleenestar-regexp

(define MAX-KLEENESTAR-REPS 20)
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Generating Words
• ;; regexp → word Purpose: Generate random using given regexp

(define (gen-regexp-word rexp)

(cond [(empty-regexp? rexp) EMP]

• [(singleton-regexp? rexp)

(let [(element (singleton-regexp-a rexp))]

(if (not (string<=? "0" element "9"))

(list (string->symbol element))

(list (string->number element))))]
• [(kleenestar-regexp? rexp)

(let* [(reps (random (add1 MAX-KLEENESTAR-REPS)))

(element-list

(flatten

(build-list

reps

(λ (i)

(gen-regexp-word (kleenestar-regexp-r1 rexp))))))]

(if (empty? element-list) EMP element-list))]
• [(union-regexp? rexp)

(let* [(uregexps (extract-union-regexps rexp))

(chosen (list-ref uregexps (random (length uregexps))))]

(gen-regexp-word chosen))]
• [else (let [(cregexps (extract-concat-regexps rexp))]

(filter (λ (w) (not (eq? w EMP)))

(flatten (map gen-regexp-word cregexps))))])
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Regular Expression Applications

• To illustrate the use of regular expressions we explore the problem of
generating passwords

• A password is a string that:

• Has length ≥ 10
• Includes at least one of each: lowercase letter, uppercase

letter, and special character (i.e., $, &, !, and *)
• Based on this de�nition, the sets for lowercase letters, uppercase letters,

and special characters are de�ned as follows:

(define lowers '(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define uppers '(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z))

(define spcls '($ & ! *))

• The corresponding sets of regular expressions are de�ned as:

(define lc (map (λ (lcl) (singleton-regexp (symbol->string lcl))) lowers))

(define uc (map (λ (ucl) (singleton-regexp (symbol->string ucl))) uppers))

(define spc (map (λ (sc) (singleton-regexp (symbol->string sc))) spcls))
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Regular Expression Applications

• There are six di�erent orderings these required elements may appear in
(with arbitrary elements in between)

L U S U L S S U L L S U U S L S L U

• Each de�nes a language

• Union regular expression needed for each group of elements:

(define LOWER (create-union-regexp lc))

(define UPPER (create-union-regexp uc))

(define SPCHS (create-union-regexp spc))

(define ARBTRY (kleenestar-regexp

(union-regexp LOWER (union-regexp UPPER SPCHS))))
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(define LOWER (create-union-regexp lc))

(define UPPER (create-union-regexp uc))

(define SPCHS (create-union-regexp spc))

(define ARBTRY (kleenestar-regexp

(union-regexp LOWER (union-regexp UPPER SPCHS))))



Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications
• Regular expressions for each of the six languages:

(define LUS (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp ARBTRY

(concat-regexp SPCHS ARBTRY)))))))

(define LSU (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp ARBTRY

(concat-regexp UPPER ARBTRY)))))))

.

.

.
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• The language of passwords is a word in any of the languages de�ned for the
di�erent orderings of required elements:

(define PASSWD (union-regexp

LUS

(union-regexp

LSU

(union-regexp

SLU

(union-regexp SUL

(union-regexp USL ULS))))))



Regular
Expressions
for Computer

Science
Students

Marco T.
Morazán

Introduction

Related
Work

Regular
Expressions
in FSM

Binary Numbers

Generating
Words in the
Language
De�ned by a
Regular
Expression

Regular
Expression
Applications

Concluding
Remarks

Regular Expression Applications

• The constructor for a password takes no input and returns a string

• A word is generated by applying gen-regexp-word to PASSWD and
converted to a string

• If the length of the string is greater than or equal to 10 then it is returned
as the generated password. Otherwise, a new password is generated.
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Regular Expression Applications

• ;; → string

;; Purpose: Generate a valid password

(define (generate-password)

(let [(new-passwd (passwd->string (gen-regexp-word PASSWD)))]

(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

• ;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

• (check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))
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(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

• ;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

• (check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))
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• The students run the program and con�rm that all the tests pass

• Students are encouraged to generate a few passwords:

> (generate-password)

"&&!$m*F!&$*"

> (generate-password)

"!e*e!*oS!lq$"

> (generate-password)

"!y*$r!C&*d$"

> (generate-password)

"&&!p$rUA$*"

> (generate-password)

"W&*!eKY**D"

> (generate-password)

"vxY*We!Wx*&&u"

• Students feel a sense of accomplishment seeing the results: robust
passwords
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• Didactic approach for introducing students to regular expressions

• Work presented emphasizes algorithm design and implementation to keep
Computer Science students motivated and engaged

• Most students comment that the password-generating approach is like
nothing they had thought about before

• Future work will address creating a database of examples instructors and
students may draw upon for practice or presentation

• The goal is to have a diverse set of examples

• In addition, extensions to FSM are being considered: a primitive to generate
words in the language of a given regular expression?

• Thank you! Any questions?
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