Teaching Experiences In A
Functional-first Multi-paradigm
Programming Course

Francisco Saiz
School of Computer Science and Engineering
Autonomous University of Madrid

TFPIE 2015
June 2th

/ Introduction \

Functional Programming (FP) is more and
more embedded into mainstream imperative
languages
Microsoft .NET Framework
* C#, F#

Oracle Java
¢ Java 8 (functional interfaces, streams)

_ /

TFPIECN Francisco Saiz - TFPIE 2015 2

/ Further/Advanced Programming \

Elective course (final year)

Graduate on Computer Science Engineering
® 240 ECTS Bachelor Degree (4 years)

® School of Computer Science and Engineering
® Autonomous University of Madrid

Delivered for the past three years

Average of 20 students

® Greater appeal from other elective courses (Mobile
Interaction, Video Games, etc.), with 70 student at most

_ /

TFPIECN Francisco Saiz - TFPIE 2015 3

/ Overview \

The course consists
of two parts

Haskell (50%) Haskell 2\‘

. N E T (5 O %) A Purely Functional Language

* CH#

° F# ‘\—?]
F# at the end of the
course C#

No practical NET
assignments, and

serving as a summing
up part

TFPIECN Francisco Saiz - TFPIE 2015 4

/ IDEs

Haskell
eclipsefp (eclipse plug-in)
® Open source

¢ Syntax highlighting, code
completion, error messages
and suggestions, integration
with GHC, quick fixes, etc.

NET

Microsoft Visual Studio
® Proprietary

® Much more robust than
eclipsefp

oD

Micrpsoﬁ' "‘.
Visual Studio

TFPIECN Francisco Saiz - TFPIE 2015

/ Haskell \

It makes easier for students to learn FP concepts
lazy evaluation, currying, immutability, monads, etc.

Similarity to Math language
A more declarative programming style
Students’ background

Proficient in Java and C

Programs as sequences of instructions based on imperative
patterns

® Openly modifying states defined by variables, neglecting both
referential transparency and side-effect issues

Higher-order functions, as useful abstractions

Monadic operations
Bridge between FP and imperative programming

k |O actions and state handling as meaningful examples /

TFPIECN Francisco Saiz - TFPIE 2015 6

/ Choice of .NET languages \

FP Is broadly used in C#/F#
Microsoft research teams’ high interest in FP
Extensive use of .NET In the industry
Increasing appeal for students

Multi-paradigm setting
Students to enhance OOP knowledge through C#

C# improves many Java features

Harnessing C++-like language constructs
® While using managed memory

More powerful and declarative

_ /

TFPIECN Francisco Saiz - TFPIE 2015 7

/ C# language, | \

Imperative-first (OOP)

Comparison to Java

Properties, indexers, value/reference types, boxing,
generics, operator overloading, variance, etc

Parametric polymorphism
Revisiting Java generics concepts
Haskell polymorphism versus C# generics

Functions
Generic delegates
No currying (operator “.”)

Parameters for higher-order methods
k ® Extension methods /

TFPIECN Francisco Saiz - TFPIE 2015 8

/ Functions

™

type Func a b = a->b

delegate B Func<A,B> (A)

interface Function<A,B> {B apply(A)}
type Func<'a, 'b> = 'a->'b

(Haskell)
(C#)
(Java)
(E'#)

_

TFPIECN Francisco Saiz - TFPIE 2015

/ C# language, li \

Collections as inputs for higher-order
operations

C# IEnumerable Interfaces, similar to:

® Haskell list comprehensions
® F# lists or sequences
® Java streams

Values of C# delegates

C# lambda expressions
Methods

Concepts Function/Closure/Method
\C# delegates / Java functional interfaces /

TFPIECN Francisco Saiz - TFPIE 2015 10

/ C# higher-order operations, | \

User-defined generic extension methods,
e.g. for composition:

static Func<T1l, T3> Compose<Tl, T2, T3>
(this Func<T2,T3> £,
Func<T1l,T2> q)
{return x => f(g(x));,}

_ /

TFPIECN Francisco Saiz - TFPIE 2015 11

/ C# higher-order operations, Il \

Predefined generic extension methods, e.g.
map/reduce operations

public static IEnumerable<T2>
Select<Tl, T2> // map
(this IEnumerable<Tl>,
Func<T1l, T2>)
public static T2
Aggregate<Tl, T2> // reduce
(this IEnumerable<Tl>,
T2, Func<T2, T1, T2>)

—/

TFPIECN Francisco Saiz - TFPIE 2015 12

// C# language, Il \\

Ilterators

Declarative expressions and laziness
Marking return values through yield construct
® Relation with Haskell list comprehensions

LINQ

Declarative language iIn.NET Framework
® Reminds SQL queries and Haskell list comprehensions

Featuring declarative, functional coding style

_ /

TFPIECN Francisco Saiz - TFPIE 2015 13

7

Coding the infinite primes

~

[N
TE

J
IE

}

| n<-[1..], 1sPrime n] (Haskell)
numerable<int> Primes () { (C#, yield)
for (int num = 2; ; num++)
if (IsPrime(num)) vyield return num;
numerable<int> Primes () { (C#, LINQ)

TEnumerable<int> query =
from num in IntegersFrom(2)
where IsPrime (num)
select num;

return query;

\L

TFPIECN Francisco Saiz - TFPIE 2015

14

/ F# overview \

Open source functional-first multi-paradigm
NET classes available both to C# and F#

Haskell algebraic data types as F#
discriminated unions

Pattern matching for input data

Functions (F# values) are curried and
Immutable-first

Imperative instructions also possible on mutable values,

e.g. while loops, instead of recursive functions, as in
Haskell

Collections (lists, arrays or seguences)
kLINQ and computation expressions /

TFPIECN Francisco Saiz - TFPIE 2015 15

s

Comparing Haskell/F#

Type parameter
Lists

Tuples

List
comprehensions

Lambda

Qpressions

a, b,

Value =2 [2, 3]

Type = [Int]
Operators =2 (:) (++)
Value > (2, 3,4)

Type - (Int,Int,Int)

[| <—,]

Usual 2 'a, 'b,
Unusual 2> “a, "b,
Value > [2;3]

Type = int list
Operators =2 (::) (Q)

Value =2 2,3,4
Type = int * int * int

[for .. do . yield ..]

fun x y -> x+ty

/

Francisco Saiz ---

TFPIE 2015 16

Conway’s Game of Life

T
&b

,*‘\\T "‘\
e "
& s
~

B

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes

File Talk

o

File:Game of life beacon.gif

From Wikipedia, the free encyclopedia

Mo higher resolution available.

=

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes

File:Game of life beacon.gif

From Wikipedia, the free encyclopedia

Mo higher resolution available.

nextgen,

type Pos = (Int,Int)
type Board = [Pos]

liveneighbs :: Board

births
nextgen b = survivors b ++ births b
-> Int

survivors,

-> Pos

:: Board

-> BRoard

TFPIECN Francisco Saiz

TFPIE 2015 17

/ Coding around the “Game of Life”\

liveneighbs b =
length filter
let liveneighbs b =
List.length << List.filter

sSurvivors b =

[p | p <= b,
let survivors b =

elem

[for p in b do

(elem

(isAlive Db)

(liveneighbs b p)

(liveneighbs b p)

(Haskell)
neighbs
(F#)
(1sAlive b) << neighbs
(Haskell)
[2,3]]
(F#)

[2;3]) then yield p]

_

/

Francisco Saiz ---

TFPIE 2015 18

/ Course management, | \

15 weeks

As a weekly basis
3 hours (theory classes)
2 hours (practical assignments)

6 practical assignments
3 on Haskell, and 3 on C#
30% for each student’s overall mark

Assignments 1-2 to introduce Haskell concepts

Assignment 3 about a Haskell REFERENCE
EXAMPLE, benefitting from it, which is to be extended
with new functionality, e.g.,

The Game of Life code by G. Hutton, with new survival
rules, an enhanced user interface and error handling

TFPIECN Francisco Saiz - TFPIE 2015 19

/ Course management, i \

Assignments 4-5

Implement in C# the reference example, plus a
Windows Forms graphical user interface
® Using just OOP imperative programming

Assignment 6

Using FP in C#, according to the Haskell code
developed on assignment 3, appreciating FP assets:
® higher-order operations
® [ambda expressions
® vield keyword and LINQ statements

No practical assignments on F#
An F# version about the Haskell reference example is/

discussed In a classroom session

TFPIECN Francisco Saiz - TFPIE 2015 20

/ Guiding exercises \

One hour a week

With the teacher’s support, the students
solve guiding exercises

At the following class, students are provided with
the solved exercises, which are discussed in detall

Method much appreciated by students
nteractive learning

Direct application of theoretical concepts
Preventing students from getting lost

_ /

TFPIECN Francisco Saiz - TFPIE 2015 21

/ Final thoughts \

While many FP subjects are left during the
course, students encounter a different way of
programming

They become aware of its extensiveness and
usefulness in modern languages

They regard Haskell as a more academic

language, not having an IDE as robust as .NET
languages

Functional algebra in programming turns is
definitely a great achievement for students

Relying on Math language, programming turns
kout to be a rewarding abstraction /

TFPIECN Francisco Saiz - TFPIE 2015 22

/ Comments and Questions?

~

_

Acknowledgments

Work funded by the
Comunidad Autonoma de
Madrid, project e-Madrid
(S2013/ICE-2715)

Thanks to Alejandro Serrano
Mena, author of the book
Beginning Haskell, a Project-
Based Approach (2014) and
former Autonomous University
of Madrid student, for
encouraging me for this
submission

QUESTIONS
WELCOME HERE

TFPIECN Francisco Saiz

TFPIE 2015

23

