
Teaching Experiences In A

Functional-first Multi-paradigm

Programming Course

Francisco Saiz

School of Computer Science and Engineering

Autonomous University of Madrid

TFPIE 2015
June 2th

Introduction

 Functional Programming (FP) is more and

more embedded into mainstream imperative

languages

• Microsoft .NET Framework

• C#, F#

• Oracle Java

• Java 8 (functional interfaces, streams)

2 Francisco Saiz --- TFPIE 2015

Further/Advanced Programming

 Elective course (final year)

• Graduate on Computer Science Engineering

• 240 ECTS Bachelor Degree (4 years)

• School of Computer Science and Engineering

• Autonomous University of Madrid

 Delivered for the past three years

• Average of 20 students

• Greater appeal from other elective courses (Mobile

Interaction, Video Games, etc.), with 70 student at most

3 Francisco Saiz --- TFPIE 2015

Overview

 The course consists
of two parts
• Haskell (50%)

• .NET (50%)
• C#

• F#

 F# at the end of the
course
• No practical

assignments, and
serving as a summing
up part

4 Francisco Saiz --- TFPIE 2015

IDEs

 Haskell
• eclipsefp (eclipse plug-in)

• Open source

• Syntax highlighting, code
completion, error messages
and suggestions, integration
with GHC, quick fixes, etc.

 .NET
• Microsoft Visual Studio

• Proprietary

• Much more robust than
eclipsefp

5 Francisco Saiz --- TFPIE 2015

Haskell

 It makes easier for students to learn FP concepts
• lazy evaluation, currying, immutability, monads, etc.

 Similarity to Math language
• A more declarative programming style

 Students’ background
• Proficient in Java and C

• Programs as sequences of instructions based on imperative
patterns
• Openly modifying states defined by variables, neglecting both

referential transparency and side-effect issues

 Higher-order functions, as useful abstractions

 Monadic operations
• Bridge between FP and imperative programming

• IO actions and state handling as meaningful examples

6 Francisco Saiz --- TFPIE 2015

Choice of .NET languages

 FP is broadly used in C#/F#
• Microsoft research teams’ high interest in FP

 Extensive use of .NET in the industry
• Increasing appeal for students

 Multi-paradigm setting
• Students to enhance OOP knowledge through C#

 C# improves many Java features
• Harnessing C++-like language constructs

• While using managed memory

• More powerful and declarative

7 Francisco Saiz --- TFPIE 2015

C# language, I

 Imperative-first (OOP)

 Comparison to Java
• Properties, indexers, value/reference types, boxing,

generics, operator overloading, variance, etc

 Parametric polymorphism
• Revisiting Java generics concepts

• Haskell polymorphism versus C# generics

 Functions
• Generic delegates

• No currying (operator “.”)

• Parameters for higher-order methods
• Extension methods

8 Francisco Saiz --- TFPIE 2015

Functions

type Func a b = a->b (Haskell)

delegate B Func<A,B> (A) (C#)

interface Function<A,B> {B apply(A)} (Java)

type Func<'a,'b> = 'a->'b (F#)

9 Francisco Saiz --- TFPIE 2015

C# language, II

 Collections as inputs for higher-order
operations
• C# IEnumerable interfaces, similar to:

• Haskell list comprehensions

• F# lists or sequences

• Java streams

 Values of C# delegates
• C# lambda expressions

• Methods

 Concepts Function/Closure/Method

 C# delegates / Java functional interfaces

10 Francisco Saiz --- TFPIE 2015

C# higher-order operations, I

 User-defined generic extension methods,

e.g. for composition:

11 Francisco Saiz --- TFPIE 2015

static Func<T1,T3> Compose<T1,T2,T3>

 (this Func<T2,T3> f,

 Func<T1,T2> g)

 {return x => f(g(x));}

C# higher-order operations, II

 Predefined generic extension methods, e.g.

map/reduce operations

12 Francisco Saiz --- TFPIE 2015

 public static IEnumerable<T2>

 Select<T1, T2> // map

 (this IEnumerable<T1>,

 Func<T1, T2>)

 public static T2

 Aggregate<T1, T2> // reduce

 (this IEnumerable<T1>,

 T2, Func<T2, T1, T2>)

C# language, III

 Iterators

• Declarative expressions and laziness

• Marking return values through yield construct

• Relation with Haskell list comprehensions

 LINQ

• Declarative language in.NET Framework

• Reminds SQL queries and Haskell list comprehensions

• Featuring declarative, functional coding style

13 Francisco Saiz --- TFPIE 2015

Coding the infinite primes

14 Francisco Saiz --- TFPIE 2015

[n | n<-[1..], isPrime n] (Haskell)

IEnumerable<int> Primes() { (C#, yield)

 for (int num = 2; ; num++)

 if (IsPrime(num)) yield return num;

}

IEnumerable<int> Primes() { (C#, LINQ)

 IEnumerable<int> query =

 from num in IntegersFrom(2)

 where IsPrime(num)

 select num;

 return query;

}

F# overview

 Open source functional-first multi-paradigm

 .NET classes available both to C# and F#

 Haskell algebraic data types as F#
discriminated unions

 Pattern matching for input data

 Functions (F# values) are curried and
immutable-first
• Imperative instructions also possible on mutable values,

e.g. while loops, instead of recursive functions, as in
Haskell

 Collections (lists, arrays or sequences)

 LINQ and computation expressions

15 Francisco Saiz --- TFPIE 2015

Comparing Haskell/F#

HASKELL F#

Type parameter a, b, ... Usual  'a, 'b, ...

Unusual  ^a, ^b, ...

Lists Value  [2,3]

Type  [Int]

Operators  (:) (++)

Value  [2;3]

Type  int list

Operators  (::) (@)

Tuples Value  (2,3,4)

Type  (Int,Int,Int)

Value  2,3,4

Type  int * int * int

List

comprehensions

[… | …<-…, …] [for … do … yield …]

Lambda

expressions

\ x y -> x+y fun x y -> x+y

Francisco Saiz --- TFPIE 2015 16

Conway’s Game of Life

17 Francisco Saiz --- TFPIE 2015

type Pos = (Int,Int)

type Board = [Pos]

nextgen, survivors, births :: Board -> Board

nextgen b = survivors b ++ births b

liveneighbs :: Board -> Pos -> Int

Coding around the “Game of Life”

18 Francisco Saiz --- TFPIE 2015

liveneighbs b = (Haskell)

 length . filter (isAlive b) . neighbs

let liveneighbs b = (F#)

 List.length << List.filter (isAlive b) << neighbs

survivors b = (Haskell)

 [p | p <- b, elem (liveneighbs b p) [2,3]]

let survivors b = (F#)

 [for p in b do

 if (elem (liveneighbs b p) [2;3]) then yield p]

Course management, I

 15 weeks

 As a weekly basis
• 3 hours (theory classes)

• 2 hours (practical assignments)

 6 practical assignments
• 3 on Haskell, and 3 on C#

• 30% for each student’s overall mark

 Assignments 1-2 to introduce Haskell concepts

 Assignment 3 about a Haskell REFERENCE
EXAMPLE, benefitting from it, which is to be extended
with new functionality, e.g.,
• The Game of Life code by G. Hutton, with new survival

rules, an enhanced user interface and error handling

19 Francisco Saiz --- TFPIE 2015

Course management, II

 Assignments 4-5
• implement in C# the reference example, plus a

Windows Forms graphical user interface
• Using just OOP imperative programming

 Assignment 6
• Using FP in C#, according to the Haskell code

developed on assignment 3, appreciating FP assets:
• higher-order operations

• lambda expressions

• yield keyword and LINQ statements

 No practical assignments on F#
• An F# version about the Haskell reference example is

discussed in a classroom session

20 Francisco Saiz --- TFPIE 2015

Guiding exercises

 One hour a week

 With the teacher’s support, the students

solve guiding exercises

• At the following class, students are provided with

the solved exercises, which are discussed in detail

 Method much appreciated by students

• Interactive learning

• Direct application of theoretical concepts

• Preventing students from getting lost

21 Francisco Saiz --- TFPIE 2015

Final thoughts

 While many FP subjects are left during the
course, students encounter a different way of
programming

 They become aware of its extensiveness and
usefulness in modern languages

 They regard Haskell as a more academic
language, not having an IDE as robust as .NET
languages

 Functional algebra in programming turns is
definitely a great achievement for students

 Relying on Math language, programming turns
out to be a rewarding abstraction

22 Francisco Saiz --- TFPIE 2015

Comments and Questions?

 Acknowledgments
• Work funded by the

Comunidad Autonoma de
Madrid, project e-Madrid
(S2013/ICE-2715)

• Thanks to Alejandro Serrano
Mena, author of the book
Beginning Haskell, a Project-
Based Approach (2014) and
former Autonomous University
of Madrid student, for
encouraging me for this
submission

23 Francisco Saiz --- TFPIE 2015

