
Teaching Experiences In A

Functional-first Multi-paradigm

Programming Course

Francisco Saiz

School of Computer Science and Engineering

Autonomous University of Madrid

TFPIE 2015
June 2th

Introduction

 Functional Programming (FP) is more and

more embedded into mainstream imperative

languages

• Microsoft .NET Framework

• C#, F#

• Oracle Java

• Java 8 (functional interfaces, streams)

2 Francisco Saiz --- TFPIE 2015

Further/Advanced Programming

 Elective course (final year)

• Graduate on Computer Science Engineering

• 240 ECTS Bachelor Degree (4 years)

• School of Computer Science and Engineering

• Autonomous University of Madrid

 Delivered for the past three years

• Average of 20 students

• Greater appeal from other elective courses (Mobile

Interaction, Video Games, etc.), with 70 student at most

3 Francisco Saiz --- TFPIE 2015

Overview

 The course consists
of two parts
• Haskell (50%)

• .NET (50%)
• C#

• F#

 F# at the end of the
course
• No practical

assignments, and
serving as a summing
up part

4 Francisco Saiz --- TFPIE 2015

IDEs

 Haskell
• eclipsefp (eclipse plug-in)

• Open source

• Syntax highlighting, code
completion, error messages
and suggestions, integration
with GHC, quick fixes, etc.

 .NET
• Microsoft Visual Studio

• Proprietary

• Much more robust than
eclipsefp

5 Francisco Saiz --- TFPIE 2015

Haskell

 It makes easier for students to learn FP concepts
• lazy evaluation, currying, immutability, monads, etc.

 Similarity to Math language
• A more declarative programming style

 Students’ background
• Proficient in Java and C

• Programs as sequences of instructions based on imperative
patterns
• Openly modifying states defined by variables, neglecting both

referential transparency and side-effect issues

 Higher-order functions, as useful abstractions

 Monadic operations
• Bridge between FP and imperative programming

• IO actions and state handling as meaningful examples

6 Francisco Saiz --- TFPIE 2015

Choice of .NET languages

 FP is broadly used in C#/F#
• Microsoft research teams’ high interest in FP

 Extensive use of .NET in the industry
• Increasing appeal for students

 Multi-paradigm setting
• Students to enhance OOP knowledge through C#

 C# improves many Java features
• Harnessing C++-like language constructs

• While using managed memory

• More powerful and declarative

7 Francisco Saiz --- TFPIE 2015

C# language, I

 Imperative-first (OOP)

 Comparison to Java
• Properties, indexers, value/reference types, boxing,

generics, operator overloading, variance, etc

 Parametric polymorphism
• Revisiting Java generics concepts

• Haskell polymorphism versus C# generics

 Functions
• Generic delegates

• No currying (operator “.”)

• Parameters for higher-order methods
• Extension methods

8 Francisco Saiz --- TFPIE 2015

Functions

type Func a b = a->b (Haskell)

delegate B Func<A,B> (A) (C#)

interface Function<A,B> {B apply(A)} (Java)

type Func<'a,'b> = 'a->'b (F#)

9 Francisco Saiz --- TFPIE 2015

C# language, II

 Collections as inputs for higher-order
operations
• C# IEnumerable interfaces, similar to:

• Haskell list comprehensions

• F# lists or sequences

• Java streams

 Values of C# delegates
• C# lambda expressions

• Methods

 Concepts Function/Closure/Method

 C# delegates / Java functional interfaces

10 Francisco Saiz --- TFPIE 2015

C# higher-order operations, I

 User-defined generic extension methods,

e.g. for composition:

11 Francisco Saiz --- TFPIE 2015

static Func<T1,T3> Compose<T1,T2,T3>

 (this Func<T2,T3> f,

 Func<T1,T2> g)

 {return x => f(g(x));}

C# higher-order operations, II

 Predefined generic extension methods, e.g.

map/reduce operations

12 Francisco Saiz --- TFPIE 2015

 public static IEnumerable<T2>

 Select<T1, T2> // map

 (this IEnumerable<T1>,

 Func<T1, T2>)

 public static T2

 Aggregate<T1, T2> // reduce

 (this IEnumerable<T1>,

 T2, Func<T2, T1, T2>)

C# language, III

 Iterators

• Declarative expressions and laziness

• Marking return values through yield construct

• Relation with Haskell list comprehensions

 LINQ

• Declarative language in.NET Framework

• Reminds SQL queries and Haskell list comprehensions

• Featuring declarative, functional coding style

13 Francisco Saiz --- TFPIE 2015

Coding the infinite primes

14 Francisco Saiz --- TFPIE 2015

[n | n<-[1..], isPrime n] (Haskell)

IEnumerable<int> Primes() { (C#, yield)

 for (int num = 2; ; num++)

 if (IsPrime(num)) yield return num;

}

IEnumerable<int> Primes() { (C#, LINQ)

 IEnumerable<int> query =

 from num in IntegersFrom(2)

 where IsPrime(num)

 select num;

 return query;

}

F# overview

 Open source functional-first multi-paradigm

 .NET classes available both to C# and F#

 Haskell algebraic data types as F#
discriminated unions

 Pattern matching for input data

 Functions (F# values) are curried and
immutable-first
• Imperative instructions also possible on mutable values,

e.g. while loops, instead of recursive functions, as in
Haskell

 Collections (lists, arrays or sequences)

 LINQ and computation expressions

15 Francisco Saiz --- TFPIE 2015

Comparing Haskell/F#

HASKELL F#

Type parameter a, b, ... Usual 'a, 'b, ...

Unusual ^a, ^b, ...

Lists Value [2,3]

Type [Int]

Operators (:) (++)

Value [2;3]

Type int list

Operators (::) (@)

Tuples Value (2,3,4)

Type (Int,Int,Int)

Value 2,3,4

Type int * int * int

List

comprehensions

[… | …<-…, …] [for … do … yield …]

Lambda

expressions

\ x y -> x+y fun x y -> x+y

Francisco Saiz --- TFPIE 2015 16

Conway’s Game of Life

17 Francisco Saiz --- TFPIE 2015

type Pos = (Int,Int)

type Board = [Pos]

nextgen, survivors, births :: Board -> Board

nextgen b = survivors b ++ births b

liveneighbs :: Board -> Pos -> Int

Coding around the “Game of Life”

18 Francisco Saiz --- TFPIE 2015

liveneighbs b = (Haskell)

 length . filter (isAlive b) . neighbs

let liveneighbs b = (F#)

 List.length << List.filter (isAlive b) << neighbs

survivors b = (Haskell)

 [p | p <- b, elem (liveneighbs b p) [2,3]]

let survivors b = (F#)

 [for p in b do

 if (elem (liveneighbs b p) [2;3]) then yield p]

Course management, I

 15 weeks

 As a weekly basis
• 3 hours (theory classes)

• 2 hours (practical assignments)

 6 practical assignments
• 3 on Haskell, and 3 on C#

• 30% for each student’s overall mark

 Assignments 1-2 to introduce Haskell concepts

 Assignment 3 about a Haskell REFERENCE
EXAMPLE, benefitting from it, which is to be extended
with new functionality, e.g.,
• The Game of Life code by G. Hutton, with new survival

rules, an enhanced user interface and error handling

19 Francisco Saiz --- TFPIE 2015

Course management, II

 Assignments 4-5
• implement in C# the reference example, plus a

Windows Forms graphical user interface
• Using just OOP imperative programming

 Assignment 6
• Using FP in C#, according to the Haskell code

developed on assignment 3, appreciating FP assets:
• higher-order operations

• lambda expressions

• yield keyword and LINQ statements

 No practical assignments on F#
• An F# version about the Haskell reference example is

discussed in a classroom session

20 Francisco Saiz --- TFPIE 2015

Guiding exercises

 One hour a week

 With the teacher’s support, the students

solve guiding exercises

• At the following class, students are provided with

the solved exercises, which are discussed in detail

 Method much appreciated by students

• Interactive learning

• Direct application of theoretical concepts

• Preventing students from getting lost

21 Francisco Saiz --- TFPIE 2015

Final thoughts

 While many FP subjects are left during the
course, students encounter a different way of
programming

 They become aware of its extensiveness and
usefulness in modern languages

 They regard Haskell as a more academic
language, not having an IDE as robust as .NET
languages

 Functional algebra in programming turns is
definitely a great achievement for students

 Relying on Math language, programming turns
out to be a rewarding abstraction

22 Francisco Saiz --- TFPIE 2015

Comments and Questions?

 Acknowledgments
• Work funded by the

Comunidad Autonoma de
Madrid, project e-Madrid
(S2013/ICE-2715)

• Thanks to Alejandro Serrano
Mena, author of the book
Beginning Haskell, a Project-
Based Approach (2014) and
former Autonomous University
of Madrid student, for
encouraging me for this
submission

23 Francisco Saiz --- TFPIE 2015

