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Introduction 

 Functional Programming (FP) is more and 

more embedded into mainstream imperative 

languages  

• Microsoft .NET Framework 

• C#, F# 

• Oracle Java  

• Java 8 (functional interfaces, streams)  
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Further/Advanced Programming 

 Elective course (final year) 

• Graduate on Computer Science Engineering 

• 240 ECTS Bachelor Degree (4 years) 

• School of Computer Science and Engineering 

• Autonomous University of Madrid 

 Delivered for the past three years 

• Average of 20 students 

• Greater appeal from other elective courses (Mobile 

Interaction, Video Games, etc.), with 70 student at most 
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Overview 

 The course consists 
of two parts  
• Haskell (50%) 

• .NET (50%) 
• C# 

•  F#  

 F# at the end of the 
course 
• No practical 

assignments, and 
serving as a summing 
up part 
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IDEs 

 Haskell 
• eclipsefp (eclipse plug-in) 

• Open source 

• Syntax highlighting, code 
completion, error messages 
and suggestions, integration 
with GHC, quick fixes, etc. 

 .NET 
• Microsoft Visual Studio 

• Proprietary 

• Much more robust than 
eclipsefp 

 

5 Francisco Saiz    ---    TFPIE 2015 



Haskell 

 It makes easier for students to learn FP concepts 
• lazy evaluation, currying, immutability, monads, etc. 

 Similarity to Math language 
• A more declarative programming style 

 Students’ background 
• Proficient in Java and C 

• Programs as sequences of instructions based on imperative 
patterns 
• Openly modifying states defined by variables, neglecting both 

referential transparency and side-effect issues 

 Higher-order functions, as useful abstractions 

 Monadic operations 
• Bridge between FP and imperative programming 

• IO actions and state handling as meaningful examples 
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Choice of .NET languages 

 FP is broadly used in C#/F# 
• Microsoft research teams’ high interest in FP 

 Extensive use of .NET in the industry 
• Increasing appeal for students 

 Multi-paradigm setting  
• Students to enhance OOP knowledge through C# 

 C# improves many Java features 
• Harnessing C++-like language constructs 

• While using managed memory  

• More powerful and declarative 
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C# language, I 

 Imperative-first (OOP) 

 Comparison to Java 
• Properties, indexers, value/reference types, boxing, 

generics, operator overloading, variance, etc 

 Parametric polymorphism  
• Revisiting Java generics concepts 

• Haskell polymorphism versus C# generics 

 Functions  
• Generic delegates  

• No currying (operator “.”)  

• Parameters for higher-order methods 
• Extension methods 
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Functions 

 

type Func a b = a->b                      (Haskell) 

delegate B Func<A,B> (A)                  (C#) 

interface Function<A,B> {B apply(A)}      (Java) 

type Func<'a,'b> = 'a->'b                 (F#) 
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C# language, II 

 Collections as inputs for higher-order 
operations 
• C# IEnumerable interfaces, similar to:  

• Haskell list comprehensions 

• F# lists or sequences 

• Java streams 

 Values of C# delegates  
• C# lambda expressions 

• Methods 

 Concepts Function/Closure/Method 

 C# delegates /  Java functional interfaces 
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C# higher-order operations, I 

 User-defined generic extension methods, 

e.g.  for composition: 
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static Func<T1,T3> Compose<T1,T2,T3> 

       (this Func<T2,T3> f,  

        Func<T1,T2> g) 

  {return x => f(g(x));} 

 



C# higher-order operations, II 

 Predefined generic extension methods, e.g.  

map/reduce operations 
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 public static IEnumerable<T2>  

   Select<T1, T2>              // map 

      (this IEnumerable<T1>,  

       Func<T1, T2>) 

 public static T2 

   Aggregate<T1, T2>           // reduce   

     (this IEnumerable<T1>,  

       T2, Func<T2, T1, T2>) 

 



C# language, III 

 Iterators 

• Declarative expressions and laziness 

• Marking return values through yield construct  

• Relation with Haskell list comprehensions 

 LINQ  

• Declarative language in.NET Framework 

• Reminds SQL queries and Haskell list comprehensions 

• Featuring declarative, functional coding style 
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Coding the infinite primes 
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[n | n<-[1..], isPrime n]         (Haskell) 

IEnumerable<int> Primes() {       (C#, yield) 

 for (int num = 2; ; num++) 

  if (IsPrime(num)) yield return num; 

} 

IEnumerable<int> Primes() {       (C#, LINQ) 

 IEnumerable<int> query = 

  from num in IntegersFrom(2) 

  where IsPrime(num) 

  select num; 

 return query; 

} 

 



F# overview 

 Open source functional-first multi-paradigm  

 .NET classes available both to C# and F# 

 Haskell algebraic data types as F# 
discriminated unions 

 Pattern matching for input data 

 Functions (F# values) are curried and 
immutable-first 
• Imperative instructions also possible on mutable values, 

e.g. while loops, instead of recursive functions, as in 
Haskell 

 Collections (lists, arrays or sequences) 

 LINQ and computation expressions 
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Comparing Haskell/F#  

HASKELL F# 

Type parameter a, b, ... Usual                  'a, 'b, ... 

Unusual              ^a, ^b, ...  

Lists Value   [2,3]          

Type    [Int] 

Operators     (:) (++) 

Value    [2;3]        

Type      int list 

Operators     (::) (@) 

Tuples Value   (2,3,4)          

Type    (Int,Int,Int) 

Value    2,3,4 

Type     int * int * int  

List 

comprehensions 

[ … | …<-…, …] [for … do  … yield …] 

Lambda 

expressions 

\ x y -> x+y fun x y -> x+y  
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Conway’s Game of Life 
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type Pos = (Int,Int)                   

type Board = [Pos] 

nextgen, survivors, births :: Board -> Board 

nextgen b = survivors b ++ births b 

liveneighbs :: Board -> Pos -> Int 

 

 



Coding around the “Game of Life” 
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liveneighbs b =                              (Haskell) 

   length . filter (isAlive b) . neighbs 

let liveneighbs b =                          (F#) 

  List.length << List.filter (isAlive b) << neighbs 

 

survivors b =                                (Haskell) 

  [p | p <- b, elem (liveneighbs b p) [2,3]] 

let survivors b =                            (F#) 

  [for p in b do  

     if (elem (liveneighbs b p) [2;3]) then yield p] 



Course management, I 

 15 weeks 

 As a weekly basis 
• 3 hours (theory classes)  

• 2 hours (practical assignments) 

 6 practical assignments  
• 3 on Haskell, and 3 on C# 

• 30% for each student’s overall mark 

 Assignments 1-2 to introduce Haskell concepts 

 Assignment 3 about a Haskell REFERENCE 
EXAMPLE, benefitting from it, which is to be extended 
with new functionality, e.g., 
• The Game of Life code by G. Hutton, with new survival 

rules, an enhanced user interface and error handling 
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Course management, II 

 Assignments 4-5 
• implement in C# the reference example, plus a 

Windows Forms graphical user interface 
• Using just OOP imperative programming 

 Assignment 6 
• Using FP in C#, according to the Haskell code 

developed on assignment 3, appreciating FP assets: 
• higher-order operations 

• lambda expressions 

• yield keyword and LINQ statements 

 No practical assignments on F# 
• An F# version about the Haskell reference example is 

discussed in a classroom session 
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Guiding exercises 

 One hour a week 

 With the teacher’s support, the students 

solve guiding exercises 

• At the following class, students are provided with 

the solved exercises, which are discussed in detail 

 Method much appreciated by students 

• Interactive learning 

• Direct application of theoretical concepts 

• Preventing students from getting lost  
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Final thoughts 

 While many FP subjects are left during the 
course, students encounter a different way of 
programming 

 They become aware of its extensiveness and 
usefulness in modern languages 

 They regard Haskell as a more academic 
language, not having an IDE as robust as .NET 
languages 

 Functional algebra in programming turns is 
definitely a great achievement for students 

 Relying on Math language, programming turns 
out to be a rewarding abstraction  
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