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Software Architecture is an important part of the Computer Science curriculum. In this paper we
propose using Haskell as a tool for exercising architectural patterns, and argue that this enhances
understanding of the material by the students and clarity of explanation. We also provide many
examples of common architectural patterns and their Haskell counterparts to back up our suggestions.

1 Introduction

Software architecture has made its own place in the Computer Science curriculum. Once students have
learnt the basic of computer programming and low-level operations and protocols, they learnt the ba-
sics of creating larger software artifacts using Software Engineering techniques. However, Software
Engineering usually speaks about middle-level constructs: classes, interfaces. . . Software Architecture is
the next natural step, taking a birds eye view over a whole software system, and investigating its ma-
jor components and relations between them. Since architecture has major implications on performance,
maintainability or security, this branch of Software Engineering is becoming much more important.

In this paper we would like to look at some parts of a typical Software Architecture course and
how Haskell could be used as a tool for teaching some important concepts. In the current situation,
it’s very difficult for a student to fully exercise its recently gained knowledge on Software Architecture
in a practical basis: it’s completely impossible to do a project in each possible architecture discussed
throughout a course. Thus, most of the assignments in such a course usually entail writing diagrams and
documentation, tasks would do not engage students as much as coding.

This trend is deepened by the fact that Software Architecture is taught usually in a descriptive way:
how somebody would architect some system, which are the names of the components, or which relations
should be taken into account. The bottomline is that there’s no formal treatment of the differences
between architectural patterns and styles, which make it difficult to reason about them; and no tools
which could enforce a good style of architecture while learning.

The solution we propose, already hinted by the title, is to use Haskell as a tool for Software Archi-
tecture education. We shall first look at the different benefits Haskell brings to the classroom. Then, we
shall see how many common architectural patterns could be encoded whithin common Haskell libraries,
as examples of our teaching methodology.

2 Benefits of Using Haskell

Haskell is a pure lazy functional language, with support for many different ways of abstraction: paramet-
ric polymorphism, ad-hoc overloading via type classes or data type-generic programming. Its benefits
for conciseness, reusability and maintainability of code had been argued many times; and its use in the
classroom advocated. But up to this point, only low- and middle-level software construction has been
considered, let’s see the benefits for high-level Software Architecture teaching in Haskell.
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2 Teaching Software Architecture Using Haskell

2.1 Exercising Software Architecture

Nowadays, Haskell developers have an enormous amount of libraries ready to be used in Hackage, its
package repository. Some of them support architectural pattern in a quite straightforward way.

Take for example the stm (Software Transactional Memory) library [9]. In a nutshell, STM enables
the use of special variables whose access is mediated via transactions. That is, concurrent accesses to
the variable are scheduled to not interfere, and any possible constraint over the values is checked before
the final result is finally written. This description would already make it perfect to explain the very
few primitive that make up a transactional system, but it’s also possible to use it to explain the shared
database architectural pattern! The same will be argued with other pairs of library and architectural
pattern later in the text.

This brings to the table one of the abilities we were looking for: students can fiddle with an actual
system, which is fully executable but at the same time can be made small enough to be understandable.
As we see it, now instead of asking students to write a diagram of the components of a software system
using a transactional shared database, they can build it.

The reason why this is important is to give a better feasibility view on the architectures that are
designed as part of an exercise. Our experience with teaching Software Engineering is that in many
cases students propose designs which look nice in theory, but will never be implementable. The reason is
usually that they left some intermediate module or class which is needed to get the data in the right way.
We think that this problems also translate to Software Architecture designs. Alas, the implications of a
wrong design are every worse: a whole architecture can loose many of their performance or scalability
skills if new unexpected components need to be added to make it fully functional.

In many cases, the Haskell libraries we refer too encode invariants in their types or do not allow
to use types outside its intented meaning by using different artifacts. For example, the way in which
monad transformers are encoded forbid any use of a function in a monad stack from lower layers. This
helps students to keep honest about themselves, not introducing any trick inside some architecture. At
the same time, teachers can be sure that components are not used in unexpected ways. Otherwise, code
won’t compile.

We shall remark that we are not proposing to change Software Architecture courses into a set of
programming exercises which build into some specific libraries. Careful analysis, considerations of the
pros and cons of each architectural style and discussion of the best scenarios for each kind of requirement
are still needed and should be part of such a course. But for the more concrete part, that which describes
which architectural patterns are commonly use, we feel that concretizing them into implementation will
aid into understanding the material.

2.2 Reasoning About Patterns

A second benefit for Software Architecture patterns teaching derives from the usual way in which Haskell
libraries are structured. Very often, Haskell library writers structure them from a small set of primitives,
which are later combined to get higher-level functionality. A perfect example of this mentality is the sep-
aration of the whole bunch of state, input/output, references, etcetera, that imperative language provides
into separate monads which can be combined at will.

At the same time, these primitives are given strong types which guarantee that only correct composi-
tion of components is allowed, and which guide the developer in the correct usage. Those types can help
the teacher pinpoint the important properties and invariants of a given architectural pattern, using a more
formal language instead of an ad-hoc description. We expect the types also help the students getting a
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better understanding of the material.
But the larger benefit we see from Haskell’s strong typing system belong to the realm of reasoning:

• Haskell programmers are used (or should become used) to using equational reasoning inside their
programs. In such a way, properties can be proved using a simpler algebraic style, instead of
convoluted reasoning about the inner details of functions.

An example of such property can be found in [9] regarding the stm primitives orElse and retry:

M1 ‘orElse‘ (M2 ‘orElse‘ M3) = (M1 ‘orElse‘ M2) ‘orElse‘ M3

retry ‘orElse‘ M = M

M ‘orElse‘ retry = M

• In many cases, it’s interesting to see how some architectural pattern can be implemented or sim-
ulated in term of others. Once again, the stm library provides an excellent example: it provides
unbounded FIFO channels TChan implemented using only STM primitives. When looking at the
implementation, students can learn how they can use channel functionality in a system where only
an atomic, shared database, is available.

Of course, this fact is in no way Haskell-specific. But the previous remarks concerning strong
typing and equational reasoning helps into building confidence for students that those constructions
indeed work. We can check that properties derive from the axioms of another pattern, or pinpoint
extra assumptions that we need to make for everything to work.

As stated above, libraries which will be presented later in the paper define their interface in terms
of a small set of primitives. This benefits looking at extra functionality that is needed in a real system
in a compositional way. For example, resource management is usually a topic that is transversal to
the architectural pattern in our system. The resourcet package, for example, pinpoints the specific
primitives that you need in a system to provide safe allocation and deallocation of resources.

2.3 Side-effect: Learning More Haskell

The main aim in a Software Architecture course should be giving the students knowledge about the
process of getting the high-level structure of a software system right, this is something obvious. But
the idea of using Haskell as a vehicle for architectural patterns has also a nice side-effect: students can
improve their Haskell skills at the same time.

Nowadays, Haskell is usually taught at program level: which are the basic functional constructs, how
to use the most common abstractions and type classes, which are the most useful libraries, etcetera, at
the source code level. But when the topic is about creating larger pieces of software or an entire system,
the main tool is object-oriented programming. We strongly believe that Haskell is the right choice for
large code bases, and that the user base of functional thinking should be enlarged. Embedding Haskell
implementation into a Software Architecture course, as we propose, would help into this aim, too.

Advantages of using Haskell to explore architectural patterns
� Patterns can be put in practice in code
� Basic primitives point in libraries to basic components of the pattern
� Strong typing encodes invariants and keeps code honest
� Students keep learning Haskell
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3 Main Patterns

At this point, the reader should already have the feeling that using Haskell libraries can indeed help
students into absorbing architectural patterns in an easier and more structured way. But in this paper we
do not only want to discuss the issue in abstract, thus we shall change the focus into which actual patterns
benefit the most from this way of thinking and which are, in our opinion, the libraries that suit best each
paradigm. In our search for libraries, we looked specially at two properties:

• The chosen libraries should be relatively well-known and used in the wild. In that way, students
can reuse the Haskell knowledge they gain into other projects.

• We do not want to impose extra requirements on the programming side, apart from a basic knowl-
edge of the Haskell language. Thus, we prefer libraries which do not resort into much Template
Haskell or very fancy meta-programming la Template Haskell.

When chosing the patterns, we have looked at the Software Architecture course taught at Utrecht
University 1. Those patterns come indeed from the widely-used book by Len Bass et. al. [3], which
gives us some confidence that what we propose can be used also in other formation centres.

3.1 Relaxed Layers – Monad Transformers

Monad transformers [14] are one of the best-known elements in the Haskell toolbox. In a system build
from monad transformers, we see a set of functionality layers (implemented as monads), in which each
layer is allowed to call the lower ones. Thus, it simulates quite well the relaxed layers architectural
pattern.

The main trick is to be found in the MonadTrans type class from the transformers package:

class MonadTrans t where

lift :: Monad m => m a -> t m a

-- lift . return = return

-- lift (m >>= f) = lift m >>= (lift . f)

By using lift, you can take a computation in some layer m and access its functionality in an upper
layer t m. If you think lift as modelling the communication effort that must be done between two
components, the need to use several lifts when stepping through multiple layers give the students the
feeling that, although good design-wise, using a layered structure impose some extra costs in the system.

The strict separation between each transformer ensures that each layer can only access the lower
ones through their public interface, which is usually encoded as a “monad class” inside the mtl package.
This is an instance of the way in which we can use Haskell to ensure that the abstraction properties of
this architectural pattern are not violated when using them in code. At the very end, each of the layers
is instantiated with an actual implementation by using the corresponding runMonadT functions that are
provided for each monad transformer. This works as sort of dependency injection, and once again ensures
that we cannot access inner details of each layer when working with it from upper ones. Indeed, each
layer in the system could be in a separate logical or physical machine and that access may turn out to be
impossible in a real system.

We mentioned that monad transformers encode the relaxed layered pattern, in contrast to the strict
one. This is because by using several calls to lift, a layer in a monad stack is allowed to access not only
the very next layer, but also any lower ones. In strict layered systems, layers do not have this functionality

1The schedule can be found at http://www.cs.uu.nl/docs/vakken/mswa/.

http://www.cs.uu.nl/docs/vakken/mswa/
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available: any information from a further layer must be obtain from calls to the very next one. We do
not know of any library available to Haskell developers which may suit this paradigm better, although
one could argue that hiding the MonadTrans instance for a specific layer would disallow that by-pass.
Discussion about the pros and cons of allowing this direct connection between components without using
intermediate layers can be quite useful at the classroom to understand the trade-offs between performance
and maintainability in the system.

Very often, layered systems include more than one software component per layer. However, monad
transformers only allow “vertical composition”, where one layer wraps the entirety of lower ones. If
“horizontal composition” is desired, monad coproducts [15] can help bridging the gap.

3.1.1 Non-Commutativity and Control Flow

Monad transformers show an interesting aspect of layered systems: even if components are independent,
the order in which you put them together may influence the overall functionality. In more formal terms,
this is usually called the non-commutativity of monad composition. As an example, if you have state
and error monads, you can either wrap errors with a layer of state, in which case you obtain semantics
similar to exceptions in imperative languages; or you can do it in the reverse other, effectively making
exceptions return to the previous state, and thus simulating transactions.

We believe that a property like this one is quite interesting to show to students, which may naively
assume that independent components in a system would never interfere with each other. Furthermore,
this problem is quite explicit if you look at the types involved in the composition of monads, and highlight
the power of string typing while learning new concepts as stated above.

In a traditional layered system, each of the components may only affect the data flow. That is, you can
call functions or procedures in other layers, and get a result back. Monad transformers generalize this
idea, by allowing layers affect also the control flow of the program. Let’s take as an example the List

monad: its effect is to spawn several computations, modelling non-determinism in a quite neat way. Or
also an exception monad, which enables the program to use that error construct.

Many of the practical problems related to monad composition come from this control operations,
rather than data ones. We suggest delving into some of this problems in a Software Architecture course,
because it points out the important effect of layers which affect the control flow of the program.

The essential solution in this case is to add to each layer a way to save its “internal state” (whatever
that means depends on the specific component itself) prior to going down in the stack. This is captured
by the MonadTrans type class from package monad-control:

class MonadTrans t => MonadTransControl t where

data StT t :: * -> *

liftWith :: Monad m => (Run t -> m a) -> t m a

restoreT :: Monad m => m (StT t a) -> t m a

-- liftWith . const . return = return

-- liftWith (const (m >>= f)) = liftWith (const m) >>= liftWith . const . f

-- liftWith (\run -> run t) >>= restoreT . return = t

type Run t = forall n b. Monad n => t n b -> n (StT t b)

A more in-depth discussion on this topic and how other libraries have approached a solution can be
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found within the layers package2, which tries to provide a more correct implementation of control
lifting, taking into consideration possible resource management issues.

Relaxed Layered Architecture = Monad Transformers
� Each monad in a stack models a layer in the system, and lift represents communication
� Composition order affects the functionality
� Control operations (such as exceptions) need special care

3.2 Broker – Effects

Instead of organising the system architecture in layers, one can make each component self-standing and
have a mediator between them, which routes the requests to the correct component and takes care of
relaying the answer too. This mediator is usually called the broker of the system.

The extensible-effects package [12] provides the same functionality of transformers, but
built using a broker architecture. Each of the monad transformers in the previous section is now seen as
a effect with a corresponding handler. Usually, when you want some work to be performed, you send the
request to the broker, which takes care of sending the reply. But in this framework, you instead provide
a continuation, which will be called as needed inside the corresponding handler.

Note that this is only at the level of implementation, in the outside everything looks quite similar to
old plain monads. Take one of the examples in [12]:

example :: Member (Reader Int) r => Eff r Int

example = do v <- ask

return (v + 1)

The only difference is the use of Eff and the constraint Member (Reader Int) r. This documents
that for this code to work, you will eventually need to inject a component that handles requests of type
Reader Int. You can do so via runReader:

runReader :: Eff (Reader e :> r) w -> e -> Eff r w

runReader m e = loop (admin m) where

loop (Val x) = return x

loop (E u) = handleRelay u loop (\(Reader k) -> loop (k e))

newtype Reader e v = Reader (e -> v)

The type signature tells us that if you needed a Reader e, when using runReader this effect is taken
as handled and you get back code with one requirement less. But, of course, the important part is in its
implementation. Two functions are involved:

• admin asks the broker if there’s a request available;

• handleRelay takes care of checking whether the request can be handled by this component (by
inspecting the type of its possible arguments, in this case Reader) and execute the corresponding
piece of code, or it should be given back to the broker to check for a new possible handler.

In the example, if the request is of the correct type, we get a continuation k which is given the
initial value e for the environment. Other effect will handle k in a different way.

2At http://hackage.haskell.org/package/layers/docs/Documentation-Layers-Overview.html.

http://hackage.haskell.org/package/layers/docs/Documentation-Layers-Overview.html
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It’s worth pointing out that the need of each handler to call handleRelay stems from an architectural
decision in the library: effects should be extensible. Thus, the broker cannot know a priori which kind of
messages will be handled by each component, and needs to ask.

Broker Architecture = Extensible Effects
� Each component in the system is a handler of some effects
� The architecture of extensible-effects allows extending the set of components

3.3 Pipe-and-Filter – Streams and Pipes

In a pipe-and-filter system, a series of components is put in sequence: the output of one of them is the
input of the next one in the queue. Each component may filter, transform, or produce new data it from
the stream it receives. This model of computation is the one used in the terminal when using the | pipe.

In the Haskell world, a similar kind of composition is available under various names such as iteratees,
pipes and conduits, each of them with a similarly named library in Hackage. Those libraries were not
only developed to support a pipe-and-filter paradigm, but also to deal with problems related to lazy
input/output in Haskell. History-wise, iteratee was the first attempt at building such a library, and
more recently pipes was built with an emphasis on correctness and the use of category theory to drive
the design, whereas conduit was developed with a more pragmatic view. Since one of our aims is
supporting reasoning, we shall use pipes as our base, and add some comments about conduit.

Each component is represented by a value of the type Pipe a b r. The two basic operations that
components of these systems support are yield, for generating one piece of data of type b, and await,
for consuming one element of information of type a. At the end of the execution, a Pipe can return a
final value of type r. To ease reasoning, better names are given to those Pipes which only support one
kind of operation:

-- Void is the empty type

await :: Consumer a a type Consumer a r = Pipe a Void r

yield :: a -> Producer a () type Producer b r = Pipe Void b r

The naming for the conduit library is very similar: just rename Pipe, Consumer and Producer into
Conduit, Sink and Source, respectively. The public interface of a component in a pipe-and-filter
system is the type of data it produces and consumes, and this is encoded in the types.

Once you have each component in place, it’s time to compose them. The main operator for doing so
is (>->), which can be thought as having the type:

(>->) :: Pipe a b r -> Pipe b c r -> Pipe a c r

Applying the type synonyms and some type-trickery, we can see that:

(>->) :: Producer a r -> Consumer a r -> r

That is, the library ensures that connecting some input generator to something that consumes it only
leaves its final value as result. In the conduit world, the (>->) operator is called (=$=) instead, with a
($$) variant to retrieve the end result.

Things become more interesting once we define cat, which just echoes everything it receives:

cat = forever $ await >> yield

Using this function, we can give a series of monoid-like laws for composing Pipes:

cat >-> f = f f >-> cat = f (f >-> g) >-> h = f >-> (g >-> h)
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The above text discusses the basics of using pipes to model the pipe-and-filter architectural pattern.
However, libraries support two extra features, which may be useful under some circumstances:

• Every Pipe can be allowed to do operations of a specific monad m apart from the conventional
yield and await. For example, a pipe could write something to the disc, thus wrapping the IO

monad. On the presence of those side-effects, the rules for (>->) become much more important.

• We discussed “horizontal composition” of pipes, where the output stream of one is connected to
the next input stream. But in addition to those streams, Pipes can also produce final values. The
Monad instance of Pipe allows “vertical composing” those elements.

The main distinction between pipes and conduit deserves some comments from the architectural point
of view. The latter library support out-of-the-box the concept of leftover: the possibility of a certain
component in the sequence to return back certain information to the input stream. For an example of
when such functionality is important consider parsers: in some cases the entire system needs to backtrack
to consider another branch in order to perform a successful parse tree.

Allowing leftovers means that either communication can flow also in the inverse direction to put
back elements in the previous stream, or that each component comes with a local memory to handle
those leftovers. We believe that discussing this issue in the classroom could be indeed very interesting.

As said before, conduit has native support for a leftover basic operation. In the pipes world,
support for leftovers is built over the basic elements in the pipes-parse library. The way in which it is
implemented is via the addition of a StateT layer inside the monadic effects of the pipe:
type Parser a m r = forall x . StateT (Producer a m x) m r

Thus, in this case the architectural decision was to save the leftover as an extra piece of information in
some local memory. Note that the pipes-parse library also includes support for parsing via lenses, but
we see those features very far from a real architectural pattern.

Pipe-and-Filter Architecture = Streams and Pipes
� A sequence of components filtering and modifying a stream can be simulated via Pipes
� The basic operations are yield, await and the composition (>->)

� Leftover support affects the architectural design of the system

3.3.1 The Power of pipes

Even though it may derail a bit from the purpose of showing architectural patterns, the pipes library has
an interesting design which generalizes many of the patterns in this paper. If you look at the Pipes.Core
module, you will notice that the real type underneath everything is not Pipe, but Proxy:
data Proxy a’ a b’ b m r

The difference between a Proxy and a regular Pipe is that the former is bidirectional: in one direction it
takes a and produces a’, and in the other it takes b’ and produces b. Apart from that, we have the final
result type r and the inner effects monad m. In addition, if we have a function e -> Proxy a’ a b’ b

m r, the value e can be seen as an entra input to the proxy.
The great thing is that we can get different patterns by “connecting the inner elements” in different

ways3. When using pipes, only the part with a and b is used: yield correspond to connecting the e

wire to b, and await to do so from a to r. Furthermore, (>->) will join b to the next a. Using other
combinations you can simulate client-server relathionships, and both pull- and push-based Unix pipes.

3This is quite obvious from the pictures in the Pipes.Core module documentation.
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3.4 Dataflow and MapReduce – IVars

In many cases, we can look at a whole system as a graph whose edges represent flow of information. Each
component would be waiting certain inputs from other components, and work to produce a new value.
Such a description is indeed very general: in this section we focus on the case where each component
awaits until it receives the data from its input before resuming execution.

The Haskell library which suits better this paradigm is monad-par. As the name suggests, the
original reason why it was developed was to support a certain kind of parallel execution [16], but we can
see it also as a general dataflow modelling framework in the sense we defined earlier.

The Par monad, which sits at the core of the library, supports two modes of operation. The basic one
involves the idea of future: some computation which happens in parallel to the rest of the program and
which returns a token of type future that can be used later on to ask for the result of the computation.
class Monad m => ParFuture future m | m -> future where

spawn :: m a -> m (future a)

get :: future a -> m a

A more fine-grained design can be achieved using IVars: these are write-once boxes which can be used
for communication between parallel processes. When a process tries to read an IVar, it’s blocked until
some value becomes available.
class ParFuture ivar m => ParIVar ivar m | m -> ivar where

fork :: m () -> m ()

new :: m (ivar a)

put :: ivar a -> a -> m ()

Note that usually future = ivar. Thus, get is the function used to get the value of an IVar.
Looking at them from an architectural point of view, creating the processes corresponds to initializing

each of the components which make up the system. Those components communicate through write-once
links, which are represented by IVars.

Another possibility is to explore architectures where the developer is able to spawn computations
in other nodes, like in a grid. In that case, Haskell has several tools available which allow students to
measure the problems that spawning too few or too many computations may have in the system.

3.5 Simulating MapReduce

In present days, the MapReduce pattern [6] is coming more important to process large quantities of data.
The main idea is to separate the computation in two phases: one which performs filtering or modification
of the values, and another one which computes a final value by aggregating those values. In Haskell
terms, we have a map phase and afterwards a fold phase.

The monad-par package can be used to simulate a MapReduce architecture too. You just need to
spawn several processes which use a certain part of the input and calculate the desired output. The main
process waits then until all the data is available to it and aggregates the values. Additionally, each node
which handles part of the input can itself partition its computation on new processes. Knowing when that
partition should stop is one of the key problems when using the MapReduce architectural pattern.

We think that MapReduce is one of the architectural patterns where our approach using Haskell
excels. First of all, many components of the architecture can be understood in Haskell terms. From that,
many properties can be derived: for example, the need of the aggregation function to be associative. In
addition, common MapReduce frameworks are usually big and difficult to configure. Using Haskell, we
can provide a playground for students to think how they would architect a toy system.
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3.5.1 Dataflow with Lattices – LVars

Usually, we think of values communicated between components as something that must be completely
known before the next computation can proceed. In some cases, such a dataflow graph we need a single
value, in other such as pipes, we need the next element in the stream. But many gains can be achieved
if components of an architecture can work with not-completely-known or approximate information. We
feel that this topic is usually left out of Software Architecture courses, but once again Haskell provides a
simple way to explain and understand such paradigm.

The lvish package provides such a model [13]. Within it, IVars are replaced with LVars, which are
containers of data which allow multiple writes, given that they are monotonically increasing, i.e., they
are higher in a lattice of values. When another process want to read an LVar, it provides a minimum
threshold for the value, and blocks if it hasn’t been reached yet. If this increase in the value is thought of
as better or more precise information, we can readily apply it in many contexts.

Dataflow Graphs and MapReduce = IVars and LVars
� Dataflow graphs can be modelled using IVars
� MapReduce pattern can be simulated by spawning several computations waiting for IVars
� A system can generate monotonically increasing values by using LVars

3.6 Shared Database – Software Transactional Memory

Another useful architectural pattern entails a common database where components get and modify infor-
mation. Integration happens thus at the data layer of the system, without any extra control orchestration
between components. However, access to the shared database must still be done in a correct way, ensur-
ing that data is persistent and consistent, as mandated by database standards.

Software Transactional Memory [9] provides a way to get those properties when accessing simple
program variables. The basic idea is that we can protect a variable from going into an inconsistent state
if we can rollback the changes done to it if the piece of code that must access it ends with a failure.
If operations are allowed to fail by default, the system can also use optimistic locking for preventing
interference between concurrent accesses.

With those constraints, Haskell becomes a perfect choice: since pure functions cannot have any
side-effects we can easily retry them if something goes wrong. The stm package provides the actual
implementation: every transaction must be implemented inside the STM monad, and may access one or
more transactional variables, also known as TVars.

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

modifyTVar :: TVar a -> (a -> a) -> STM ()

Once you’ve composed a whole transaction using those basic pieces, you get back a value of type STM b.
But their effects are not yet available, if you want to execute the transaction, you need to atomically4:

atomically :: STM a -> IO a

It may be the case that the transaction would lead to inconsistent state, in which case you should call
retry. In that moment, the transaction will be blocked until new values are held in the TVars. Alterna-
tively, you can call orElse to try another transaction in the first one fails:

4The output type is wrapped in IO because the outcome may depend on other transactions executing concurrently.
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retry :: STM a

orElse :: STM a -> STM a -> STM a

As can be seen, the interface in this case is quite simple, and serves well to the task of maaking available
to students an architectural pattern in a simple way.

Shared Database Architecture = Software Transactional Memory
� STM allows access to variables satisfying the ACID properties
� A shared database between components can be simulated using a set of TVars

3.7 Peer-to-Peer – Actors in Cloud Haskell

In the previous architectural patterns, we either have a central control or data bank, or several com-
ponents which have the same “category”. The peer-to-peer pattern allows decoupling even more the
various agents participating in the system, which communicate to each other using just messages. Those
components are distributed and collaborate to provide the final functionality in the system.

Cloud Haskell [8] allows creating a peer-to-peer system in our favorite language, using actors5 as
the main abstraction. In the package distributed-process, which implements those ideas, each actor
is represented as a value of type Process a, with an unique ProcessId representing it uniquely in
the network. When actors want to communicate they use send or expect, the latter used to receive a
message by indicating its type:

send :: Serializable a => ProcessId -> a -> Process ()

expect :: forall a. Serializable a => Process a

If more than one type of message is supported by a certain actor, Cloud Haskell supplies the function
receiveWait, which takes as argument a list of possible matchers for messages, which say whether
they should be handled and how:

receiveWait :: [Match b] -> Process b

-- Build matchers in several ways

match :: forall a b. Serializable a => (a -> Process b) -> Match b

matchIf :: forall a b. Serializable a => (a -> Bool) -> (a -> Process b) -> Match b

matchUnknown :: Process b -> Match b

Being easy configurable, we think that Cloud Haskell could be great tool for students to experiment
with peer-to-peer architectures, which are quite different for the most common client-server architectures
that are used widely. Having to implement such a system, students are faced with questions such as how
to ensure consistency of information between actors, how to manage resources or how to deal with
unexpected network outages or failures.

3.7.1 Channels

One of the problems in which one may run in a completely free actor system is that one is allowed to send
or receive any message in the system. This may not be what you want, and in this case the type system
helps us being honest about our intentions, once more. The idea in Cloud Haskell is to use channels,
which are message traders which only accept messages of one specific type:

5A concept already implemented in other systems such as Erlang.
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newChan :: Serializable a => Process (SendPort a, ReceivePort a)

sendChan :: Serializable a => SendPort a -> a -> Process ()

receiveChan :: Serializable a => ReceivePort a -> Process a

When looking at these channels from an architectural point of view, it may be interesting to discuss in
the classroom questions about whether these unidirectional links are enough for a typical system, what
are the implications of being able or not to create new channels at will, or the simplifications achieved if
channels are identified by their purpose in the system.

At this point, we can get back to one of our proposals for using Haskell in a Software Architecture
class: it allows us bridging concepts of different architectures, looking how one would recreate parts of
one if only resources of other are available. In this case, the focus would be in the channel implementa-
tions in the stm library. Take as an example the TQueue data type. Thanks to the open source philosophy
of this library, we can see how the constructors are defined:

data TQueue a = TQueue {-# UNPACK #-} !(TVar [a])

{-# UNPACK #-} !(TVar [a])

The rest of the module provides the actual implementation of a channel in terms of STM primitives, and
may be interesting to look at from the perspective of students.

Peer-to-Peer Architecture = Cloud Haskell
� Cloud Haskell follows the actor abstraction to provide a peer-to-peer architecture
� Actors may communicate by untyped messages or by typed channels
� stm provides an interesting implementation of channels in a shared database context

3.8 Publish-Subscribe – Reactive

Usually components in a system are though of pulling data from other components or a database. But in
many cases it’s useful to think it the other way around, and architect our components to react to changes
in the data or certain events. Those components publishing the events need not know anything about the
subscribers nor subscribers need to be aware of other components also listening at the same changes.

We can model those systems in Haskell using Functional Reactive Programming [7]. Many variations
of this idea have been developed during the years, a good survey material is [1]. Without any kind of
implication further than a subjective sense of easier usage, the examples will use the sodium library. The
most basic functions in this case are the one which generates a new event source, namely newEvent, and
that which subscribe to a certain publisher, named listen:

newEvent :: Reactive (Event a, a -> Reactive ())

listen :: Event a -> (a -> IO ()) -> Reactive (IO ())

If wondering how to publish new elements, the solution is to use the function returned as second element
of the tuple by newEvent. sodium focuses on events which will have side-effectful counterparts, other
libraries allow modelling FRP without side-effects.

An interesting feature is that Events are reified to be first-class citizens and can be combined at will.
FRP libraries tend to provide a bunch of those functions, here’s a small subset of them:

merge :: Event a -> Event a -> Event a -- Any of them

once :: Event a -> Event a -- Only the first

split :: Event [a] -> Event a -- One event per element

filterE :: (a -> Bool) -> Event a -> Event a -- Filter out
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A nice generalization of this pattern, and which points to another interesting architectural design, involves
replacing discrete events by values which may change continuously. Think of a textbox: instead of having
an Event per keystroke, you have a Behavior which encapsulates the text value at any moment in time.
In code, creation is similar to events:

newBehaviorSource :: a -> Reactive (Behavior a, a -> Reactive ())

However, a computer is a discrete machine and thus cannot react continuously. The way in which one
manage behaviors is by converting it to one event per change:

updates :: Behavior a -> Event a

Behaviors are a really powerful abstraction, which can be used to model and simulate many systems. For
example, switch and switchE allows creating behaviors or event sources which change over time, that
is, that are behaviors themselves:

switch :: Behavior (Behavior a) -> Reactive (Behavior a)

switchE :: Behavior (Event a) -> Event a

We feel that introducing events and behaviors as patterns driving the architecture of a system in-
troduce a novel viewpoint for students on the flow of information in the system, which are used to
request-response patterns as found in function calls and client-server architectures.

Publish-Subscribe Architecture = Functional Reactive Programming
� Events encapsulate a channel where a publisher can inform subscribers of changes
� Behaviors model values which vary continuously over time

3.9 Resource Management – pipes-safe and resourcet

Although tangential as a topic to core Software Architecture, resource management may impose impor-
tant restrictions on how a system can be designed. A very nice architectural design may fall apart once
we take into consideration things such as how is access to files or connections mediated, or when are
resources acquired and released. Since Haskell forces us to be honest about when we are performing
these side-effects, we see it as a great tool for considering how the architecture has to change to handle
those new requirements.

As an interesting case, we shall focus on the pipes-and-filter architectural pattern. This case is inter-
esting, because if data is asked on demand, when other components need it, the previous steps may need
to keep some resources open until they ensure that the next has consumed everything they need.

In the Haskell world two libraries, pipes-safe and resourcet (from the conduit developers),
take a similar approach to solve the problem. In both cases, an extra monadic layer is added to the mix:
SafeT and ResourceT, respectively. Below are the basic operations of the first one:

register :: m () -> SafeT m ReleaseKey

release :: ReleaseKey -> SafeT m ()

The first operation registers some cleanup action, like closing a file handle or a socket, which is ensured
to be run at later when the flow escapes from the SafeT monadic environment. For the case where
cleanup should be done before, the register function provides a ReleaseKey which can be used to
run that cleanup via release. This flow corresponds closely to the three stages of resource management
in Software Architecture as mentioned in [11]: acquisition, lifecycle and release.
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We shall remark that other patterns of resource management are also available in Hackage. For
example, resource-pool provides a simple interface for a resource pool. We omit further discussion
for space reasons.

Resource Management
� Resource management is a tangential topic to Software Architecture
� Haskell shows how to add a layer of resource management to several architectural patterns

4 Conclusions

We have seen many examples of how the discussion of a Haskell libraries enhances the explanation of
architectural patterns in the classroom by:

• providing a ground for implementation and experimentation;

• focusing on the very core set of primitives, and looking at the properties they satisfy;

• making natural to ask questions about how to enlarge the architecture to support more features.

We haven’t yet applied these ideas in any actual classroom, but are confident that functional programming
in general, and Haskell in particular, can be used successfully in this way.
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