
Disco
A Functional Programming Language for Discrete Matheamtics

Brent A. Yorgey, Hendrix College

TFPIE 2023, Boston



Disco

▶ Functional teaching language

▶ Designed for use in a Discrete Mathematics course

▶ Birthplace: TFPIE 2016, Maryland, USA!

▶ Have used it in a Discrete Math class once, in Spring 2022.

▶ Plan to use it again starting next week.



Disco goals

▶ Teach early CS students basic FP concepts

▶ Help students connect math and computation

▶ Enhance learning with an interactive platform

▶ Minimize notational & conceptual friction



Friction?

f : N → Q
f (2n) = 0

f (2n + 1) =

{
n/2 if n > 5,

3n + 7 otherwise



Friction?

f : N → Q
f (2n) = 0

f (2n + 1) =

{
n/2 if n > 5,

3n + 7 otherwise

f :: Int -> Rational

f x

| even x = 0

| n > 5 = fromIntegral n / 2

| otherwise = 3*n + 7

where

n = x `div` 2



Friction?

f : N → Q
f (2n) = 0

f (2n + 1) =

{
n/2 if n > 5,

3n + 7 otherwise

f : N -> Q

f(2n) = 0

f(2n+1) = {? n/2 if n > 5,

3n + 7 otherwise

?}



Demo!

https://replit.com/@BrentYorgey/Disco#README.md

https://replit.com/@BrentYorgey/Disco#README.md


Numeric types in Disco



Issues / Future work

▶ Error messages!

▶ Showing multiple type instantiations

▶ Types vs sets



Showing multiple type instantiations

What is the most general type of λx .x − 2?

Internally, it is something like ∀a.(HasSubtraction(a),Z <: a) ⇒ a → a

. . . but we de�nitely don't want to show that to students!

We do this instead, but it's confusing:

Disco> :type \x. x - 2

λx. x - 2 : Z → Z
Disco> (\x. x - 2) (5/2)

1/2



Showing multiple type instantiations

What is the most general type of λx .x − 2?

Internally, it is something like ∀a.(HasSubtraction(a),Z <: a) ⇒ a → a

. . . but we de�nitely don't want to show that to students!

We do this instead, but it's confusing:

Disco> :type \x. x - 2

λx. x - 2 : Z → Z
Disco> (\x. x - 2) (5/2)

1/2



Showing multiple type instantiations

What is the most general type of λx .x − 2?

Internally, it is something like ∀a.(HasSubtraction(a),Z <: a) ⇒ a → a

. . . but we de�nitely don't want to show that to students!

We do this instead, but it's confusing:

Disco> :type \x. x - 2

λx. x - 2 : Z → Z
Disco> (\x. x - 2) (5/2)

1/2



Showing multiple type instantiations

What is the most general type of λx .x − 2?

Internally, it is something like ∀a.(HasSubtraction(a),Z <: a) ⇒ a → a

. . . but we de�nitely don't want to show that to students!

We do this instead, but it's confusing:

Disco> :type \x. x - 2

λx. x - 2 : Z → Z
Disco> (\x. x - 2) (5/2)

1/2



Showing multiple type instantiations

What about something like this instead?

Disco> :type \x. x - 2

λx. x - 2

: Z → Z
: Q → Q



Types vs sets

▶ {2, 4, 7} is an example of a

▶ N is an example of a

▶ In a math class, N− {2, 4, 7} is a perfectly well-de�ned, countably in�nite
set.

▶ In Disco, N− {2, 4, 7} is a syntax error!

▶ Why the di�erence, and how do we explain/frame it for students??



Types vs sets

▶ {2, 4, 7} is an example of a

▶ N is an example of a

▶ In a math class, N− {2, 4, 7} is a perfectly well-de�ned, countably in�nite
set.

▶ In Disco, N− {2, 4, 7} is a syntax error!

▶ Why the di�erence, and how do we explain/frame it for students??



Types vs sets

▶ {2, 4, 7} is an example of a

▶ N is an example of a

▶ In a math class, N− {2, 4, 7} is a perfectly well-de�ned, countably in�nite
set.

▶ In Disco, N− {2, 4, 7} is a syntax error!

▶ Why the di�erence, and how do we explain/frame it for students??



Types vs sets

▶ {2, 4, 7} is an example of a

▶ N is an example of a

▶ In a math class, N− {2, 4, 7} is a perfectly well-de�ned, countably in�nite
set.

▶ In Disco, N− {2, 4, 7} is a syntax error!

▶ Why the di�erence, and how do we explain/frame it for students??



Types vs sets

▶ {2, 4, 7} is an example of a

▶ N is an example of a

▶ In a math class, N− {2, 4, 7} is a perfectly well-de�ned, countably in�nite
set.

▶ In Disco, N− {2, 4, 7} is a syntax error!

▶ Why the di�erence, and how do we explain/frame it for students??



https://github.com/disco-lang/disco

https://github.com/disco-lang/disco

