
Teaching Functional Patterns through Robotic
Applications

J. Boender, E. Currie, M. Loomes, G. Primiero, F. Raimondi

School of Science and Technology
Middlesex University London

June 2, 2015

Overview

The curriculum at Middlesex

Racket

MIRTO

Using MIRTO for functional programming

Middlesex University

Post-1992 university

Very diverse student community

Students tend not to do well in exams

CS at Middlesex

Completely integrated first year

Student-driven learning

No formal assessment

Assessment by SOBs

24 weeks, 120 credits

CS at Middlesex

Blocks

Block 1: introduction

Block 2: data structures and design

Block 3: robots

Each block has an associated project

CS at Middlesex

Workshops

Lecture: overview of the week

Physical

Programming

Design

Synoptic

Racket

Used to keep everything together:

Teaching programming

Implementing theoretical concepts

Design

Controlling physical devices

Why Racket?

Functional language

Flexibility

Good available GUI

Libraries aplenty

None of our students know it

MIRTO

MIddlesex Robotic plaTfOrm

Arduino

Raspberry Pi

MIRTO

MIRTO

How does it work?

Raspberry Pi runs Linux+Racket

Arduino runs custom-made firmware

Communication through ASIP protocol

Functional programming

Block 1: introduction

Lists
Functions
Recursion

Block 2: data structures

Vectors, structs, . . .
State
Design

Block 3: MIRTO

Example 1

Random movement

(define moveLeft

(lambda ()

;; code here to move left , using the

;; racket-asip library

)

)

(define moveRight ...)

(list-ref (list (moveLeft) (moveRight)) (random 2))

Example 1

Random movement

(define moveLeft

(lambda ()

;; code here to move left , using the

;; racket-asip library

)

)

(define moveRight ...)

(list-ref (list moveLeft moveRight) (random 2))

Example 2

Higher order functions

(define (process-analog-values input))

(define analogValues (string-split (substring input

(+ (str-index-of input "{") 1)

(str-index-of input "}")) ","))

(map (lambda (x) (vector-set! ANALOG-IO-PINS

(string- >number (first (string-split x ":")))

(string- >number (second (string-split x ":")))

)) ;; end of lambda

analogValues) ;; end of map

(printf "analog pins value: ~a \n" ANALOG-IO-PINS)

) ;; end process-analog-values

Example 3

Higher order functions

(cond ((> (- currentTime previousTime) interval)

;; We use map to print the value of each sensor

(map (lambda (i) (printf "IR ~a -> ~a; " i (getIR i)))

irSensors)

(printf "\n")

(set! previousTime (current-inexact-milliseconds))

)

)) ;; end of print IR

Example 4

Contracts

(provide (contract-out ;; Begin of contract

[speed (and/c number? exact-nonnegative-integer ?)]

[added_speed (-> checkSpeed any)]

[current_speed (-> number ?)]

) ;; End of contract

)

Final projects

Domino racing

Eurobot competition

Line following

Conclusion

FP works for teaching

Student engagement is up

Allows excellent students to shine

