
Teaching simple constructive proofs
with Haskell programs

presentation by Matthew Farrugia-Roberts
joint work with Harald Søndergaard

The University of Melbourne
Melbourne, Australia

TFPIE 2022

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 1 / 7

Our course: Models of Computation

Introduction to logic, discrete math, formal
languages, and computability.

Students:

Over 500 students (2021 semester)
Mostly computer science and software
engineering students
Programming background (Python, C,
Java, some students Haskell)
Diverse mathematics backgrounds

Idea: Leverage programming background as
a bridge to the maths concepts. . .

Week Topic Haskell exercises for
learning and assessment

1 Introduction Introduction to
Haskell basics
(functions,
recursion, lists,
algebraic data
types)

2 Logic
(propositional and
predicate logic,
resolution
algorithms)

3

4 Worksheets: 6%
(four fortnightly
formative tasks on
algorithms for
propositional
logic, regular
languages, and
formal grammars)

5 Assign. 1: 12%
(mathematical
and algorithmic
logic challenges)

6 Discrete maths
(sets, functions,
relations)7

8 Formal languages
(DFAs, NFAs, reg.
expressions, CFGs,
PDAs, Turing
machines)

Assign. 2: 12%
(challenges in
discrete maths
and formal
languages)

9

10

11

12 Computability

Exams Exam: 70%

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 2 / 7

Programming to learn

Grok Academy (web-based programming learning tool) + custom Haskell exercises

Description: traditional logic/TCS exercise (e.g. convert NFA to DFA)
Scaffolding: Haskell type represents formal object (e.g. DFA as 5-tuple)
Tests: custom analysis algorithms (e.g. DFA equivalent to solution)

Many exercises can be framed as instance exercises (define some structured object; integer,
formula, DFA, etc.), others as implementation exercises (define a function).

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 3 / 7

Wait, what about proofs?

We don’t want to sacrifice proof exercises (make a formal argument to establish a
proposition).

Proof exercises are effective for testing deep understanding.
Proof techniques may be considered an important learning goal in their own right.

We found that many of the proofs focus on a simple “constructive algorithm”, so we use that
for an implementation exercise:

Students implement the constructive algorithm as a Haskell function.
This requires the same deep (detailed) understanding of how to analyse and construct
formal objects.
No justification of construction’s correctness.
We can provide an alternative ‘check’ through automated testing.

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 4 / 7

Example proof (construction) exercise

Exercise: Consider the singleton alphabet Σ = {a}. Given a positive natural number d, we
can define a language of strings on Σ:

Md =
{

an ∣∣ n ≥ 0, n is a multiple of d
}

.

Prove that all languages of this form are regular: Write a function m :: Int -> DFA so
that ’m d’ returns a DFA recognising Md (for d > 0).

Haskell representation of DFAs:
type DFA = ([Int] -- states

, [Char] -- alphabet
, [((Int, Char), Int)]

-- transition relation
, Int -- start state
, [Int] -- accept states
)

Haskell construction answer:
m :: Int -> DFA
m d = (qs, "a", ts, 0, [0])

where
qs = [0..d-1]
ts = [((i, 'a'), (i+1) `mod` d)

| i <- qs
]

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 5 / 7

Is functional programming the right tool?

Students are gaining ‘hands-on’ experience
with formal objects and constructions,
sometimes with rapid test-based feedback.

But constructions are not complete proofs
(missing formal justifications). Consider, say,
proof assistants?

Haskell syntax really shines in some
examples—very close to mathematical
formalism.

On the other hand, sometimes the syntax
lets some unnecessary details get in the way.

If students are more comfortable with
programming than with mathematics, we
think coding with objects can help.

Our students are not fluent with Haskell.
New paradigm adds significant overhead.
Consider other languages?

An important direction for future work is evaluation, especially from the student perspective.

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 6 / 7

Questions?

Any questions?

More information:

M. Farrugia-Roberts and H. Søndergaard, “Teaching simple constructive proofs with
Haskell programs”, extended abstract at TFPIE 2022, full paper in preparation.

M. Farrugia-Roberts, B. Jeffries, and H. Søndergaard, “Programming to learn: Logic and
computation from a programming perspective”, ITiCSE 2022, to appear.

Grok Academy website: grokacademy.org/universities/

Models of Computation course details: handbook.unimelb.edu.au/subjects/comp30026

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 7 / 7

https://grokacademy.org/universities/
https://handbook.unimelb.edu.au/subjects/comp30026

Another example (bonus slide)

Exercise: Prove that the set of connectives {⇒,¬} is functionally complete: Write a
function tr :: Exp -> Exp that translates arbitrary propositional logic formulas into
equivalent formulas using no other connectives.

Haskell representation of
propositional logic expressions:
data Exp

= VAR Char
= NOT Exp
= AND Exp Exp
= OR Exp Exp
= IMPL Exp Exp
= BIIM Exp Exp
= XOR Exp Exp

Haskell construction answer:
tr :: Exp -> Exp
tr (VAR x) = VAR x
tr (NOT e) = NOT (tr e)
tr (IMPL e f) = IMPL (tr e) (tr f)
tr (AND e f) = NOT (IMPL (tr e) (NOT (tr f)))
tr (OR e f) = IMPL (NOT (tr e)) (tr f)
tr (BIIM e f) = tr (AND (IMPL e f) (IMPL f e))
tr (XOR e f) = NOT (tr (BIIM e f))

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 7 / 7

Assessment of construction exercises (bonus slide)

As digital exercises, constructive proof programs are amenable to marking automation.

Our marking work-flow for these questions may look something like this:

Check that the students function compiles. If not, forgive minor typos, or assess
irredeemable functions manually for partial credit.
If it compiles, run the function on a sample of test inputs.
A pre-prepared analysis script verifies properties of the outputs.
If the function passes a large number of tests, consider it correct, and award full marks.
If the function fails some tests, cluster it with other functions that have the same test
behaviour.
For each cluster, review the behaviour and (optional) the source of each function, and
assess manually for partial credit.

We also provide selective, low-level feedback to students during assessment.

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 7 / 7

More on ‘programming to learn’ (bonus slide)

Our broader approach has been to use Haskell as a medium for all kinds of exercises.

For example we find that many pen and paper exercises can be programmified into tasks
where students use Haskell as an embedded DSL to specify their answer.

We have reflected upon the benefits and costs of this approach in a paper (to appear, ITiCSE
2022):

Logistic benefits
Rich digital exercise format
Rapid exercise type development
Unified interface across topics

Pedagogical benefits
Rapid formative feedback
‘Hands-on’ engagement
Student empowerment

We have identified similar barriers to those discussed above.

Once again an important direction for future work is evaluation.

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 7 / 7

Related work

It is not a completely new idea to use programs to teach proof techniques.

Lots of work using proof assistants in logic classes

We are impressed by the broad range of topics we can cover with a single programming
language. Tools using Haskell appear rarer:

Leipzig Autotool of Johannes Waldmann:
www.imn.htwk-leipzig.de/~waldmann/autotool/

I Includes many instance exercises in logic, automata, discrete math, and more topics.
I Includes a ‘pumping lemma game’ with functions, similar to (more complex than) our

constructive proof exercises.
Others???

Matthew Farrugia-Roberts and Harald Søndergaard Teaching simple constructive proofs with Haskell programs TFPIE 2022 7 / 7

https://www.imn.htwk-leipzig.de/~waldmann/autotool/

