
Marco T Morazán

Seton Hall University

How to Design while Loops

λλλ
The Students…

◼ Students struggle with while loops

◼ maybe not toy programs

◼ Frustration

◼ Inexplainable infinite loops

◼ My loops runs, but it’s not giving me the right result
◼ The sequencing mutations problem

λλλ
Are students incompetent?

◼ No!

◼ Textbooks

◼ syntax, examples, and warnings

◼ Lip service to correctness & termination arguments

λλλ
Are students incompetent?

◼ Textbooks

◼ Operational descriptions

◼ test driver, if true execute body, if false exit loop

◼ Handle operations that are inherently repetitive

◼ Yeah, recursion too!

λλλ
Are students incompetent?

◼ What else is wrong with textbooks?

◼ No mention of state variables

◼ No mention of accumulators

◼ No mention of how to design while loops

◼ Invariants don’t just spring up out of thin air!

◼ Mutation sequencing

◼ What’s that?

λλλ
Are students incompetent?

◼ What else is wrong with textbooks?

Programming is a human activity!

Ignore teaching students to communicate

how a problem is solved

λλλ
A Design-Based Approach

◼ HtDP

◼ Generative recursion → Termination arguments

◼ Accumulative recursion → Accumulator Invariants

◼ State-Based computations → State-var Invariants

◼ Denotational Semantics

◼ Hoare Logic

λλλ
Student Background

◼ First two semesters HtDP-based

◼ First semester

◼ Structures, structural recursion, abstraction, distributed
computing

◼ Second semester

◼ Generative recursion, accumulative recursion, vectors,
state-based computing

λλλ
Student Background

◼ Resources

◼ 15 weeks of 2 75-minute lectures

◼ 20-25 students per classroom

◼ Office hours and email

◼ 20-30 hours of tutoring available

λλλ
Lessons from Accumulative Recursion

◼ Accumulators

◼ Loss of knowledge

◼ Eliminate delayed operations

◼ Invariants

λλλ
Lessons from Accumulative Recursion

fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(cond [(= n 0) 1]

[else (* n (fact (- n 1)))]))

(check-expect (fact 0) 1)

(check-expect (fact 3) 6)

; fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(local [; fact-accum: natnum natnum → natnum

; Purpose: To compute n!

; Accum Inv: accum = Πn
i=k+1 i

(define (fact-accum k accum)

(cond [(= k 0) accum]

[else (fact-accum (sub1 k)

(* accum k))]))]

(fact-accum n 1)))

(check-expect (fact 0) 1)

(check-expect (fact 3) 6)

λλλ
Lessons from Accumulative Recursion

Correctness

k=0 ➔ accum = Πn
i=1 i = n!

Invariant holds

k=n AND accum=1

accum = Πn
i=k+1 i

1 = Πn
i=n+1 i

1 = 1

accum = Πn
i=k+1 i

Πn
i=k+1 i * k = Πn

i=(k-1)+1 i

Πn
i=k i = Πn

i=k i

; fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(local [; fact-accum: natnum natnum → natnum

; Purpose: To compute n!

; Accum Inv: accum = Πn
i=k+1 i

(define (fact-accum k accum)

(cond [(= k 0) accum]

[else (fact-accum (sub1 k)

(* accum k))]))]

(fact-accum n 1)))

(check-expect (fact 0) 1)

(check-expect (fact 3) 6)

λλλ
Lessons from State-Based Design

k accum

(fact 4) = (fact-accum 4 1)

= (fact-accum 3 4)

= (fact-accum 2 12)

= (fact-accum 1 24)

= (fact-accum 0 24)

= 24

k = 4 3 2 1 0

accum = 1 4 12 24 24

λλλ
Lessons from State-Based Design

; fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(local [; natnum, Inv: k>=0

(define k (void))

; natnum, accum = Πn
i=k+1 i

(define accum (void))

(define (fact-state)

(cond [(= k 0) accum]

[else

(begin

(set! k (sub1 k))

(set! accum (* k accum))

(fact-state))]))]

(begin

(set! k n)

(set! accum 1)

(fact-state))))

; fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(local [; natnum, Inv: k>=0

(define k (void))

; natnum, accum = Πn
i=k+1 i

(define accum (void))

(define (fact-state)

(cond [(= k 0) accum]

[else

(begin

(set! accum (* k accum))

(set! k (sub1 k))

(fact-state))]))]

(begin

(set! k n)

(set! accum 1)

(fact-state))))

λλλ
Lessons from State-Based Design

(define (fact-state)

(cond [(= k 0) accum]

[else

(begin

; k>0 AND accum=Πn
i=k+1 i

(set! k (sub1 k))

; k>=0 AND accum=Πn
i=k+2 i

(set! accum (* k accum))

; k>=0 AND accum=k * Πn
i=k+2 i

(fact-state))]))]

(begin

(set! k n)

(set! accum 1)

; k>=0 AND accum=Πn
i=k+1 i

(fact-state))))

(define (fact-state)

(cond [(= k 0) accum]

[else

(begin

; k>0 AND accum=Πn
i=k+1 i

(set! accum (* k accum))

; k>0 AND accum=Πn
i=k i

(set! k (sub1 k))

; k>=0 AND accum=Πn
i=k+1 i

(fact-state))]))]

(begin

(set! k n)

(set! accum 1)

; k>=0 AND accum=Πn
i=k+1 i

(fact-state))))

λλλ
New Syntax

◼ Common to package repeated mutations with no explicit recursive call

◼ Our focus in on while loops

◼ Transformation of state-based accumulative recursive function

◼ Initialize state vars to achieve the invariant = code before 1st call to acc rec funct

◼ Negation of conjunction of non-recursive conditions is the driver

◼ Loop body = recursive cases code

◼ After loop code = non-recursive cases code

λλλ
New Syntax

; fact: natnum → natnum

; Purpose: To compute n!

(define (fact n)

(local [; natnum, Inv: k>=0

(define k (void))

; natnum, accum = Πn
i=k+1 i

(define accum (void))

(define (fact-state)

(cond [(= k 0) accum]

[else

(begin

(set! accum (* k accum))

(set! k (sub1 k))

(fact-state))]))]

(begin

(set! k n)

(set! accum 1)

(fact-state))))

(define (fact n)

(local

[(define k (void))

(define accum (void))

(define (fact-while)

(begin

(set! k n) (set! accum 1)

;; Invariant: k >= 0 AND accum = Πn
i=k+1 i

(while (not (= k 0))

;; k>0 AND accum = Πn
i=k+1 i

(set! accum (* k accum))

;; k>0 AND accum = Πn
i=k i

(set! k (sub1 k)

;; k>=0 AND accum = Πn
i=k+1 i)

;; k>=0 AND accum = Πn
i=k+1 i AND k = 0

;; ➔ accum = n!

accum))]

(fact-while)))

λλλ
New Design Recipe

1. Problem Analysis

(a) Outline how the problem is solved (b) Pick a mutable data representation

2. Write signature, purpose and effect statements, and function header

3. Write Tests

4. Develop the Loop Invariant

5. Define a function with a local expression as its body

(a) Locally declare the state variables as (void)

(b) Define the type and purpose for each state variable

(c) Define headers for helper functions

6. Write the body of the local using a begin expression

(a) Initialize the state variables to achieve the invariant

(b) Define the while loop

i. Define the driver and write the loop header

ii. Use the invariant to correctly sequence mutations

iii. Make progress towards termination

(c) Use the negation of the driver and the invariant to determine the value to return

7. Develop a Termination Argument

8. Run Tests

λλλ
New Design Recipe

; signature: Purpose: Effect:

(define (f-while ...)

(local [; <type> ; <type>

; Purpose: ; Purpose:

(define state-var1 (void)) … (define state-varN (void))

<helper functions>]

(begin

(set! state-var1 ...) … (set! state-varN ...)

; <Invariant>

(while <driver>

<while-body>)

; <Invariant> and (not <driver>)

<return value code>))

; <Termination argument>)

(check-expect (f-while …) …) … (check-expect (f-while : : :) : : :)

λλλ
Insertion Sorting in Place

◼ Problem Analysis

◼ Sort a vector, V, by mutating it

◼ Sort entire vector → sort vector interval [0..(sub1 (vector-length V))]

◼ Halt when vector interval is empty

◼ Process VI from high to low

◼ Vector is split in two: sorted and unsorted portions

◼ Insert high element, h, of unsorted portion into sorted portion
◼ h is a state variable

λλλ
Insertion Sorting in Place

◼ Write signature, purpose and effect statements, and function
header

; (vectorof number) → (void)

; Purpose: To sort the given vector in non-decreasing order

; Effect: The given vector elements are rearranged in-place.

(define (ins-vector! V)

(local

[…]

(sort! 0 (sub1 (vector-length V)))))

λλλ
Insertion Sorting in Place

◼ Write Tests

(check-expect (begin

(ins-vector! (vector))

V)  empty vector

(vector))

(check-expect (begin

(ins-vector! (vector 20 76 3 44))

V)  non-empty random

(vector 3 44 20 76))

(check-expect (begin

(ins-vector! (vector 1 2 3))

V)  non-empty sorted

(vector 1 2 3))

(check-expect (begin

(ins-vector! (vector 101 87 8))

V)  non-empty reversed

(vector 8 87 101))

λλλ
Insertion Sorting in Place

◼ Develop the Loop Invariant  Hardest Step!

◼ Show that vector is divided into two portions: sorted and unsorted

◼ Show that V is sorted at the end

◼ INV & (not driver) ➔ post condition

◼ Does this work?

◼ V[low..h] is unsorted & V[h+1..high] in non-decreasing order

INV & [low..h] is empty ➔? V[low..high] in non-decreasing order

No, can’t determine h.

Observe: V[low..h] is unsorted is not useful

◼ V[h+1..high] is sorted in non-decreasing order & h >= low-1

INV & [low..h] is empty ➔? V[low..high] in non-decreasing order

→ h = low-1

→ V[low..high] in non-decreasing order

λλλ
Insertion Sorting in Place

◼ Define a function with a local expression as its body

(a) Locally declare the state variables as (void)

(b) Define the type and purpose for each state variable

(c) Define headers for helper functions

; sort!: VINTVV [low..high] → (void)

; Purpose: Sort given vector interval in non-decreasing order

; Effect: Given interval elements are rearranged in-place

(define (sort! low high)

(local

[; int

; Purpose: Next element index to move to sorted part of V

(define h (void))]

…)

(define (insert! lo hi) …)  Make local?

λλλ
Insertion Sorting in Place

◼ Write the body of the local using a begin expression

(a) Initialize the state variables to achieve the invariant

(b) Define the while loop

i. Define the driver and write the loop header

ii. Use the invariant to correctly sequence mutations

iii. Make progress towards termination

(c) Use the negation of the driver & invariant to determine return value

(begin (set! h high)

; INV: V[h+1..high] in non-decreasing order & h >= low-1

(while (not (empty-VINTV? low h))

; h >= low & V[h+1..high] in non-decreasing order

(insert! h (sub1 high))

; h >= low & V[h..high] in non-decreasing order

(set! h (sub1 h))

; h >= low-1 & V[h+1..high] in non-decreasing order) ; closes while

λλλ
Insertion Sorting in Place

◼ Write the body of the local using a begin expression

(a) Initialize the state variables to achieve the invariant

(b) Define the while loop

i. Define the driver and write the loop header

ii. Use the invariant to correctly sequence mutations

iii. Make progress towards termination

(c) Use the negation of the driver & invariant to determine return value

(begin …) ; closes while

; h >= low-1 & V[h+1..high] in non-decreasing order & [low..h] is empty

; ==> h < low

; ==> h = low-1

; ==> V[low..high] in non-decreasing order

(void)))) ; closes sort!

λλλ
Insertion Sorting in Place

◼ Develop a Termination Argument

(begin (set! h high)

; INV: V[h+1..high] in non-decreasing order & h >= low-1

(while (not (empty-VINTV? low h))

; h >= low & V[h+1..high] in non-decreasing order

(insert! h (sub1 high))

; h >= low & V[h..high] in non-decreasing order

(set! h (sub1 h))

; h >= low-1 & V[h+1..high] in non-decreasing order)

h starts at high making [low..h] a valid vector interval. Each loop iteration
decreases h by 1. Eventually, h becomes < low. This makes [low..h] empty and
the loop terminates.

λλλ
Insertion Sorting in Place

◼ Similar development for insert!

◼ Run tests

λλλ
Concluding Remarks

◼ Beginning students can design while loops

◼ Designing generative recursive, accumulative recursive, and state-based
functions prepares them well

◼ A modicum of Hoare Logic goes a long way!

◼ Less frustration

◼ sequencing mutations

◼ infinite loops

◼ Prepares students for program verification

◼ Future work

◼ Making while loops iterative

◼ Measuring student reaction and retention

◼ Vertical integration into the curriculum

λλλ
Thank you!

Any questions?

