
How	to
Plan	Programs

Shriram	Krishnamurthi,	Brown	University
Joint	work	primarily	with
Kathi	Fisler
Siddhartha	Prasad
Elijah	Rivera
Jack	Wrenn



Lines of Code

Fr
us

tr
at

io
n

The 
Blank
Page

Syndrome

“My
Program
Doesn’t
Work!”

2



Lines of Code

3

Fr
us

tr
at

io
n



Understanding	Problems
Before	Programming



Exercise

Implement	a	median function

Given	a	list	of	numbers,	compute	its	median
Que

stio
n:	W

hat
	cou

ld	g
o	w

ron
g?



• Not	accounting	for	empty	input
• Not	accounting	for	even-length	lists
(left	median?	right	median?	average?)

• Not	accounting	for	unsorted	input

• Confusing	median	for	mean
• Confusing	median	for	mode
• …



Students	often	solve	the	wrong problem

Autograding:
• Comes	too	late
• Fear	of	change	(sunk	costs)
• Learning	objectives	lost

We	keep	focusing	on	understanding	programs
We	don’t	focus	enough	on	understanding	problems



Standard	solution:

Express	the	problem	in	your	own	words.

Problem:

Students	don’t	have	their	“own”	words!



Exercise:

Provide	examples	(input/output	pairs)

for	a	median function



median([list: 1, 2, 3]) is 2
median([list: 1, 2, 3, 4, 5]) is 3

median([list: 1, 2, 3, 4]) is …

median([list: 1, 3, 2]) is …



Examples	provide	a	concrete form	of	“in	your	own	words”
Examples	are	also useful	as	test	cases

But	inert examples	are	useless	(and	students	won’t	write	them	[Castro	&	Fisler])

Idea

Run	examples	against	known	correct	&	known	buggy	implementations
(We	can	do	this	before	they’ve	written	any	code)

“Semantic	mutation	testing”:
The	buggy	implementations	correspond	to	known	misconceptions



median([list: 1, 2, 3]) is 2
median([list: 1, 2, 3, 4, 5]) is 3

median([list: 1, 2, 3, 4]) is 2.5

median([list: 1, 3, 2]) is 3

median
Test	suites	are	classifiers

This	is	“autograding”	—
but	before any	code
has	been	written



median([list: 1, 2, 3]) is 2
median([list: 1, 2, 3, 4, 5]) is 3

median([list: 1, 2, 3, 4]) is 2.5

median([list: 1, 3, 2]) is 2

median

middle	of
out-of-sort	list

mean

Test	suites	are	classifiers

Ideal	test	suite:
Passes	correct	impl(s)
Catches	all	buggy	impls mode

va
lid
ity

th
or
ou
gh
ne
ss

✅

❌

❌

❌

✅

❌

❌

✅



“24	h
our	T

A”	(fo
r	pro

blem
	com

preh
ensio

n)



“Semantic	mutation	testing”:

The	buggy	implementations	
correspond	to

known	misconceptions

How	do	we	know	this?



Experts	curate	the	mutants
based	on	experience,	student	questions,	etc.

But	the	expert	blind	spot is	a	real	concern!





Gather	failing	
student	
examples

Cluster	and
look	for

misconceptions

Translate
misconceptions
into	buggy	code



Staff
predicted

Data
reflected



3 2 9Staff
predicted

Data
reflected

5	total 11	total

Keep

Add	from¿Drop?



6 1 16Staff
predicted

Data
reflected

7	total 17	total

Keep

Add	from¿Drop?



Classsourcing

Identifies	misconceptions	from	failing	examples

Works	around	expert	blind-spots

Relatively	lightweight



Summary

Students	program	before	understanding	the	problem

We	need	lightweight	ways	to	help	them	debug	understanding

Examples	are	very	good	for	this

Examples	can	be	operationalized	via	“semantic	mutation	testing”

Student	mistakes	can	be	mined	for	insight





Lines of Code

25



Planning	Programs
Before	Programming



Write	a	program	that	takes	a	list/array	of	numbers	
and	produces	the	average	of	the	non-negative	
numbers	that	occur	before	(an	optional)	-999

Ignore	I/O	– just	take	the	list/array	as	input

Use	any	language	you	wish



On	Mark	Guzdial’s Blog



• truncate	at	sentinel
• ignore	negatives
• sum the	data
• count the	data
• compute	average
• handle	empty	data	(division	by	zero)

Write	a	program	that	takes	a	list/array	of	numbers	
and	produces	the	average	of	the	non-negative	
numbers	that	occur	before	(an	optional)	-999



[Fisler 2014]	studied	students	at	4	unis/5	courses	using	HtDP

Findings:

Students	with	clear	structure	had	far	fewer	errors

Students	made	good	use	of	built-in	and	higher-order	functions

Students	showed	a	much	greater	diversity	of	structures
than	traditional	in	imperative	programming

Guzdial:	this	“beat”	rainfall



Palindrome:	standard	definition,	
but	ignore	whitespace,	
punctuation,	and	capitalization	

Adding	Machine:	given	list	of	
numbers,	return	list	of	sums	of	
each	sublist separated	by	zeros;	
stop	after	two	consecutive	zeros

e.g.:	[3,0,2,5,0,0,9]à [3,7] Shopping	Cart:	compute	total	cost	
of	a	cart	(list	of	items),	giving	one	
discount	based	on	the	number	of	
hats	in	the	cart	and	another	based	
on	the	total	price	of	shoes	in	the	cart

Rainfall:	Write	a	program	that	takes	a	list/array	of
rainfall	values	(numbers)	and	produces	the	average	of	the	
non-negative	numbers	that	occur	before	(an	optional)	-999



All	the	prior	research	has	been	in	the	“backward”	direction:
Have	students	write	programs,	try	to	determine	plans

What	if	we	go	in	the	“forward”	direction?
Have	students	write	plans	before programming?





Two	Different	Views	of	HOFs

HOFs	as	abstractions	of	code
(i.e.,	uniformity	over	several	traversal/processing	patterns)

HOFs	as	abstractions	of	behavior
(i.e.,	uniformity	over	several	data	transformations)

Common	in
textbooks
(e.g.,	HtDP)

View	we’re	trying
to	develop

34



["red", "green", "blue"] —» [3, 5, 4]

[4, 6, 2, 5] —» [1, 1, 1, 1]

[1, 4, 4, 2, 6, 1] —» [1, 1]

[1, 7, 3, -1, -4] —» [1, 7, 3]

map

map

filter

filter or
take-while

35



Important	from	both	plan	composition
and	data	science perspectives

36

map

filter

ormap

Output
Type

Output	Element
Type

Output
Length

list

list

bool

can	differ

same

same

<=



Functional	programming	(FP)	provides	a	
rich	set	of	tools	for	reducing	duplication	in	
your	code.	The	goal	of	FP	is	to	make	it	easy	
to	express	repeated	actions	using	high-level	
verbs.	I	think	that	learning	a	little	about	FP	
is	really	important	for	data	scientists,	
because	it's	a	really	good	fit	for	many	
problems	that	you'll	encounter	in	practice.

—Hadley	Wickham,	Advanced	R,	etc.



Three	Kinds	of	Activities

Clustering:
given	i/o	pairs,	put	them	in	equivalent	groups

Labeling:
given	pictorial versions,	indicate	intended	functions

Classification:
for	each	i/o	pair,	indicate	which	function(s)	can	do	this

38



Takeaways

Students	did	increasingly	well	at	our	tasks;
we	also	found	some	common	errors

Students	do	confuse	distinct	functions	with	similar	features

Clustering and	classification are	very	useful	activities

We’ve	created	useful	instruments
for	both	research	and teaching

39



Onward	to	planning…





We’r
e	loo

king	
for	c

ollab
orato

rs!



New	Curricular	Horizons



Data	Structure	Progress	Since	the	1970s

1970s Pascal arrays

1980s C arrays

1990s C++ arrays

2000-2015 Java ArrayList

2015-now Python associative	arrays



Whereas	in	Functional	Programming…

1960s Lisp lists

1980s Scheme lists

1990s ML lists

2000s Haskell lists

Now? Lean/Coq/… Building	artisanal	lists	inductively



GPT-3

LowCode/NoCode

StackOverflow

Program	synthesis

Data-centric
algorithms

Property-based
testing

Verification
in	programming



47

Understanding	Problems
Before	Programming

Planning	Problems
Before	Programming

shriram@gmail.com

@shriramk@mastodon.social


