How to
Plan Programs

Shriram Krishnamurthi, Brown University
Joint work primarily with

Kathi Fisler
Siddhartha Prasad
Elijah Rivera

Jack Wrenn

uoIlelisnid

Lines of Code

Frustration

HOW TO DESIGN PROGRAMS

Second Edition

An Introduction o Programming and Computing

Matthias Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

“\/‘v‘

Lines of Code

Understanding Problems
Before Programming

Exercise

Impleme n function

Given mbers, compute its median

Not accounting for empty input
Not accounting for even-length lists
(left median? right median? average?)

Not accounting for unsorted input

Confusing median for mean
Confusing median for mode

Students often solve the wrong problem

Autograding:
e Comes too late

* Fear of change (sunk costs)
* Learning objectives lost

We keep focusing on understanding programs
We don’t focus enough on understanding problems

Standard solution:

Express the problem in your own words.

Problem:

Students don’t have their “own” words!

Exercise:
Provide examples (input/output pairs)

for a median function

median([1list:
median([list:

median([list:

median([1list:

3]) is 2
3, 4, 5]) is 3

3, 4]) is ..

21) is ..

Examples provide a concrete form of “in your own words”

Examples are al

so useful as test cases

But inert examples are useless (and students won't write them [Castro & Fisler])

Idea

Run examples against known correct & known buggy implementations
(We can do this before they’ve written any code)

“Semantic mutation testing”:
The buggy implementations correspond to known misconceptions

Test suites are classifiers

This is “autograding” —
but before any code
has been written

median

Test suites are classifiers

middle of
out-of-sort list

Ideal test suite:
Passes correct impl(s)
Catches all buggy impls

median([list: 1, 3, 2]) is 3

median([list: 1, 2, 3, 7, 10]) is 3

Emedian-tests.arr

INCORRECT CONSEQUENTLY, THOROUGHNESS IS UNKNOWN

definitions://:10:2-10:30

11 median([list: 1, 3, 2]) is 3

e b

These tests are valid and consistent with the assignment handout. They caught 1 of 4 sample
buggy programs. Add more test cases to improve this test suite's thoroughness.

Emedian-tests.arr

These tests are valid and consistent with the assignment handout. They caught 2 of 4 sample
buggy programs. Add more test cases to improve this test suite's thoroughness.

“Semantic mutation testing”:

The buggy implementations
correspond to
known misconceptions

How do we know this?

Experts curate the mutants
based on experience, student questions, etc.

But the expert blind spot is a real concern!

median([list: 1, 3, 2]) is 3

Rmedian-tests.arr

INCORRECT CONSEQUENTLY, THOROUGHNESS IS UNKNOWN

definitions://:10:2-10:30

11

median([list: 1, 3, 2]) is 3

Gather failing
student
examples

Cluster and
look for
misconceptions

Translate
misconceptions
into buggy code

Staff
predicted

Data
reflected

Keep

;Drop? Add from

Staff
predicted

Data
reflected

Keep

;Drop? Add from

Staff
predicted

Data
reflected

Classsourcing

[dentifies misconceptions from failing examples
Works around expert blind-spots

Relatively lightweight

Summary

Students program before understanding the problem
We need lightweight ways to help them debug understanding
Examples are very good for this
Examples can be operationalized via “semantic mutation testing”

Student mistakes can be mined for insight

Executable Examples for Programming Problem Comprehension

John Wrenn
Computer Science Department
Brown University
Providence, Rhode Island, USA
jswrenn@cs.brown.edu

Shriram Krishnamurthi
Computer Science Department

Brown University

Providence, Rhode Island, USA

sk@cs.brown.edu

Who Tests the Testers?*
Avoiding the Perils of Automated Testing

Kathi Fisler
Computer Science
Brown University

USA
kfisler@cs.brown.edu

Shriram Krishnamurthi
Computer Science
Brown University

USA
sk@cs.brown.edu

John Wrenn
Computer Science
Brown University

USA
jswrenn@cs.brown.edu

John Wrenn
Computer Science Department
Brown University
Providence, Rhode Island, USA
jswrenn@cs.brown.edu

Will Students Write Tests Early Without Coercion?*

Shriram Krishnamurthi
Computer Science Department
Brown University
Providence, Rhode Island, USA
sk@cs.brown.edu

Reading Between the Lines:
Student Help-Seeking for (Un)Specified Behaviors

JOHN WRENN, Brown University, USA
SHRIRAM KRISHNAMURTHI, Brown University, USA

Siddhartha Prasad
Computer Science Department
Brown University

Providence, Rhode Island, USA
1

Making Hay from Wheats: A Classsourcing Method to Identify
Misconceptions

Ben Greenman
Computer Science Department
Brown University
Providence, Rhode Island, USA

Tim Nelson
Computer Science Department
Brown University
Providence, Rhode Island, USA
l.com timothy_nelson@brown.edu

siddhartha_prasad@brown.edu b g

John Wrenn
Computer Science Department
Brown University
Providence, Rhode Island, USA
jack@wrenn.fyi

&

Shriram Krishnamurthi
Computer Science Department
Brown University
Providence, Rhode Island, USA
shriram@brown.edu

ver B,

Lines of Code

25

Planning Programs
Before Programming

Write a program that takes a list/array of numbers
and produces the average of the non-negative
numbers that occur before (an optional) -999

Ignore I/0 - just take the list/array as input

Use any language you wish

On Mark Guzdial’s Blog

A Challen§e to Computing Education Research: Make
e Progress

Measurab

[August 16,2010at9:50pm | < 40 comments

After 30 years, why hasn’'t somebody beaten the Rainfall Problem? Why can’t
someone teach a course with the explicit goal of their students doing much better
on the Rainfall Problem — then publish how they did it? We ought to make
measurable progress.

| don't think that this is an impossible goal. In fact, | bet that some of the existing
research projects in computing education could "beat” (generate published reports
with better results) these current studies.

« The TeachScheme approach focuses on design based on data. | betthat their
students could beat the Rainfall Problem or the McCracken working group
problem.

Write a program that takes a list/array of numbers
and produces the average of the non-negative
numbers that occur before (an optional) -999

* truncate at sentinel

* ignore negatives

* sum the data

* count the data

* compute average

* handle empty data (division by zero)

|Fisler 2014] studied students at 4 unis/5 courses using HtDP

Findings:
Students with clear structure had far fewer errors
Students made good use of built-in and higher-order functions

Students showed a much greater diversity of structures
than traditional in imperative programming

Guzdial: this “beat” rainfall

Rainfall: Write a program that takes a list/array of
rainfall values (numbers) and produces the average of the
non-negative numbers that occur before (an optional) -999

Palindrome: standard definition,
but ignore whitespace,

punctuation, and capitalization

Adding Machine: given list of
numbers, return list of sums of
each sublist separated by zeros;
stop after two consecutive zeros

eg:[3,0,2,5,0,0,9] 2 [3,7]

Shopping Cart: compute total cost

of a cart (list of items), giving one
discount based on the number of
hats in the cart and another based
on the total price of shoes in the cart

All the prior research has been in the “backward” direction:
Have students write programs, try to determine plans

What if we go in the “forward” direction?
Have students write plans before programming?

P52 Pruc
dein

2

| E z | TEg ., e sl

Connacting coble

Vertical wheel Slot

Roller ball

light-emitting diode (LED)

Phatodiode

Two Different Views of HOFs

Common in

textbooks
(e.g., HtDP)

HOFs as abstractions of code
(i.e., uniformity over several traversal /processing patterns)

View we're trying

to develop

HOFs as abstractions of behavior
(i.e., uniformity over several data transformations)

34

"red", "green", "blue"] —» [3, 5, 4]

[4J 6: 2: 5] —> [1J 1) 1:

[1) 4: 4: 2: 6: 1] —> [1

o
=
| M-

b

filter or
take-while

[1, 7, 3, -1, -4] —» [1, 7, 3]

Output Output Element Output

Type Type Length
map list can differ same
filter list same <=
ormap bool

Important from both plan composition
and data science perspectives

Functional programming (FP) provides a
rich set of tools for reducing duplication in
your code. The goal of FP is to make it easy
to express repeated actions using high-level
verbs. I think that learning a little about FP
is really important for data scientists,
because it's a really good fit for many
problems that you'll encounter in practice.

—Hadley Wickham, Advanced R, etc.

Three Kinds of Activities

Clustering:
given i/0 pairs, put them in equivalent groups

Labeling:
given pictorial versions, indicate intended functions

Classification:
for each i/o pair, indicate which function(s) can do this

Takeaways

Students did increasingly well at our tasks;
we also found some common errors

Students do confuse distinct functions with similar features
Clustering and classification are very useful activities

We've created useful instruments
for both research and teaching

Onward to planning...

" valid-words (words : (letters :

{11 =@ lambda-function-that'checks-if‘the-string-i given "'"strings

‘map H B
‘fitter I B
<andmap B B
<ormap B B
foidl N B
fordr M N

' valid-words words | ([letters :

o BHIERE andmap listachar-asvalid-letter? letters-of-word

| valid-words (words : ([letters :

filter

andmap |(Helperfunction:is-valid-char?*Use*"member"to-determine-if-a‘char:is‘in"LETTERS)
| words
*(Each word,*deconstructed-into-arlist'using

Modernizing Plan-Composition Studies

Kathi Fisler Shriram Krishnamurthi Janet Siegmund
) WPI Brown University University of Passau
kfisler@cs.wpi.edu sk@cs.brown.edu siegmunj@

fim.uni-passau.de

Shriram Krishnamurthi

Brown University
Providence, RI, USA

Robert Goldstone

shriram@brown.edu rgoldsto@indiana.edu
Brown University Indiana University
Providence, RI, USA Bloomington, IN, USA

Structural versus Pipeline Composition
of Higher-Order Functions (Experience Report)

ELIJAH RIVERA, Brown University, USA
SHRIRAM KRISHNAMURTHI, Brown University, USA

New Curricular Horizons

Data Structure Progress Since the 1970s

it

Whereas in Functional Programming...

Building artisanal lists inductively

GPT-3

LowCode/NoCode Data-centric

algorithms

StackOverflow

Property-based

Program synthesis _
testing

Verification
in programming

Understanding Problems
Before Programming

Emedian-tests.arr

These tests are valid and consistent with the assignment handout. They caught 2 of 4 sample
buggy programs. Add more test cases to improve this test suite's thoroughness.

Planning Problems
Before Programming

valid-words ' words ! letters -

it o V.

report filter _andmap |is-a-char-a-validletter? lletters-of-word " ¢

shriram@gmail.com

w

@shriramk@mastodon.social

47

