
18/06/14

1

Teaching the Construction of
Domain Specific Languages
 Pieter Koopman
Rinus Plasmeijer

1

the context of
Teaching the Construction of Domain Specific Languages
• we have a master course advanced functional programming

• topics:

Ø generic programming

Ø GADTs

Ø monads

Ø iTask

Ø testing (QuickCheck / Gast)

Ø Language semantics and implementation, ..

• department requires a focus on Domain Specific Languages

Ø embedding a DSL in a FPL is well known

Ø how does this effects our course?

2

18/06/14

2

new organisation of advanced functional programming

• use one running example for DSL implementation strategies

• stress the DSL aspect in other topics

Ø task oriented programming: iTask

Ø model-based testing: Gast

3

the context of
Teaching the Construction of Domain Specific Languages
• department requires a focus on Domain Specific Languages

Ø shallow and deep embedding of DSLs

Ø While from Nielson & Nielson as running example

Ø introduce tooling to optimise the implementation of While

• generic programming, monads, GADTs, ..

• the DSLs give us an excellent motivation for introducing these
techniques

Ø apply those techniques to serious DSLs

• iTask, Gast, ..

• this improves our course

Ø we teach the interesting topics in FP with a better motivation

4

18/06/14

3

5

deep embedding: representation of expressions from while

the grammar
a

 = n // number
 | v // variable
 | a + a
 | a - a
 | a * a

the data type
:: AExpr

 = Int Int
 | Var Var
 | (+.) infixl 6 AExpr AExpr
 | (-.) infixl 6 AExpr AExpr
 | (*.) infixl 7 AExpr AExpr

:: Var :== String

dot to avoid
name conflicts infix constructor

with binding power

priority should be
fixed by additional

grammar rules

6

deep embedding: semantics of arithmetic expressions

Scott brackets
A : a → State → Number
A [[n]] s = N [[n]]
A [[v]] s = s v
A [[a1+a2]]s = A [[a1]] s + A [[a2]] s
A [[a1-a2]] s = A [[a1]] s - A [[a2]] s
A [[a1*a2]] s = A [[a1]] s × A [[a2]] s

Clean
A :: AExpr State → Int
A (Int n) s = n
A (Var v) s = s v
A (x +. y) s = A x s + A y s
A (x -. y) s = A x s - A y s
A (x *. y) s = A x s * A y s

see Nielson & Nielson 1992
only the syntax is improved

18/06/14

4

deep embedding of while

7

8

18/06/14

5

take home message

• sd

9

• asas

•  asas

10

18/06/14

6

adsd

• sdsds

•  sads

11

asas

• sdsd

12

