Extended Abstract: How to Derive an Electronic Functional
Programming Exam from a Paper Exam with Proofs and
Programming Tasks

Ole Liibke* ©® Konrad Fuger'
Fin Hendrik Bahnsen™* Katrin Billerbeck! Sibylle Schupp*

{ole.luebke, k.fuger, fin.bahnsen, katrin.billerbeck, schupp}@tuhh.de
*Institute for Software Systems

TInstitute of Communication Networks FInstitute for Artificial Intelligence in Medicine
1 Center for Teaching and Learning University Medicine Essen
Hamburg University of Technology (TUHH) Essen, Germany

Hamburg, Germany

Electronic exams (e-exams) have the potential to substantially reduce the effort required for conduct-
ing an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor
constructive alignment in favor of automation. We show how an e-exam for functional programming
can be derived from a paper exam with proof and programming tasks in a way that accounts for the
above-mentioned trade-off. As a first step, we analyzed our pre-e-exam course and exams to iden-
tify potentials for automation, keeping in mind the learning objectives of the course and how tasks
are aligned with them. We then devised a plan for the transformation that we realized by extend-
ing the YAPS e-exam system. The extensions include a new standalone tool that analyzes student
code for task-relevant features, checking answers with regular expressions, a new algorithm for eval-
uating proofs, and a general-purpose comment field for students. Additionally, we created a new
higher-level language to specify regular expressions tailored to common patterns in Haskell code.
We evaluated the resulting e-exam by analyzing the degree of automation in the grading process,
asking students for their opinion, and critically reviewing our own experiences. We found that al-
most all tasks can be graded automatically at least in part, and correct solutions can often be detected
as such. Yet, awarding partial points is still often impossible. The students agree that an e-exam is
the right examination format for the course, and examiners (us) enjoy a more time-efficient grading
process. On the other hand, creating an e-exam requires more effort than creating a paper exam, so
in the future we also want to investigate ways to introduce more automation in that phase.

Keywords: Electronic Examination, Automated Grading, Constructive Alignment

1 Introduction

A strong argument for electronic exams (e-exams) is their high potential for automation, which can
decrease the effort of conducting an exam, especially during grading. Yet, care must be taken to sacri-
fice neither task complexity [6] nor constructive alignment (CA) [3] in favor of automation. However,
e-exams also offer a great opportunity to improve the alignment between learning objectives, activi-
ties, and assessment. It is essential that digital teaching should likewise be reflected in digital exams
rather than testing programming skills on paper. Still, there is a challenge in developing appropriate
electronic, complex, and open-ended tasks to assess deeper understanding. Following the recent in-
troduction of large scale electronic examinations [7] and the development of the extensible Your Open

SF. H. Bahnsen was with the Institute of Embedded Systems, TUHH, when the presented work was created.

© O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Submitted to:
TFPIE 2023

https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0001-5962-6583
https://orcid.org/0000-0002-8472-1483
https://orcid.org/0000-0002-5204-4713

2 How to Derive an Electronic FP Exam from a Paper Exam

Examination System for Activating and emPowering Students (YAPS) [1] at Hamburg University of Tech-
nology (TUHH), we show how to develop and implement high-quality, professionally appropriate, and
cognitively demanding e-exam tasks in the functional programming (FP) course at TUHH. YAPS en-
ables competency-based testing and is thus fully in line with the principles of CA. It is licensed open
source and follows a contactless and state-based operating concept that reproduces the testing procedure
of TUHH. Because of data protection laws in Germany there is no real alternative to self-hosting the
examination software, which excludes many alternative examination systems.

This extended abstract is organized as follows: Section 2 summarizes how we analyzed our pre-
e-exam FP courses and past exams to identify potentials for automation and improvement. Section 3
showcases how we realized our ideas, mostly through extending YAPS. Because we teach FP using
the example of Haskell but YAPS only offered a C/C++ compiler, we extended it with the Glasgow
Haskell Compiler (GHC)'. Additionally, the extension features a tool to analyze student code for task-
relevant features (e.g., usage of pattern matching) that we developed specifically for the e-exam. Another
extension is checking answers with regular expressions (RegExs). We found that crafting RegExs that
are flexible enough to accept all valid solutions, but also strict enough to reject any wrong answers,
is a challenging and time-consuming process. Therefore, we devised a small, high-level specification
language for RegExs tailored to common patterns found in Haskell code, and a tool that compiles these
specifications to actual RegExs. Furthermore, YAPS features a way for students to enter proofs (‘“Proof
Puzzle”) that are then graded fully automatically. However, the original algorithm produces results that
differ from our own, manual evaluation. Consequently, we developed a new algorithm based on the
length of correct proof sequences that is congruent with our judgment. Finally, while a paper exam is
very flexible in terms of input (i.e., anything that can be written or drawn), an e-exam is not because it
requires specific input in specific input fields (e.g., a numeric input field only accepts numbers). Because
we did not want to take that flexibility away from students, we extended YAPS with a comment field
for each task that students can freely use to their liking. Section 4 contains the evaluation with respect
to degree of automation, the opinions of students collected in a poll directly after the exam, and the
opinions of the examiners (us). Section 5 provides a summary and an outlook on future work we plan
for the e-exam.

2 Analysis of our Pre-E-Exam FP Course

Changes to the examination of a course should be reflected in the teaching activities, and vice versa. This
ensures that the teaching activities prepare the students to take the exam, and that the exam assesses the
knowledge and skills taught in the course. To be able to review this mutual dependency, in this section
we summarize the analysis of our pre-e-exam FP course and exams.

Overall, there are three weekly teaching activities in the course: First, the lecture lays the foundation
for the other activities. Second, so-called programming labs provide an opportunity to get hands-on
experience with FP. During the labs, students solve small programming tasks with the support of student
tutors [5, 2]. Third, there are homework exercise sheets that, in contrast to the labs, are supposed to be
solved alone. The tasks in labs and exercises match the topics covered in the lecture during the same
week and are designed to support the students in reaching the learning objectives (LOs). During the
last month of the lecture period, we introduce a few changes to what is described above. Most notably,
the last two tasks of each programming lab are designed to revisit topics covered earlier in the lecture
period. During the last lab session, students are presented with the opportunity to solve an old exam.

"https://www.haskell.org/ghc/

https://www.haskell.org/ghc/

O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp 3

These final few lab sessions are also the part of the course that requires changes when changing the type
of examination because here we specifically prepare the students for the exam.

The exam is usually divided into eight main tasks with subtasks, where each of the main tasks is
dedicated to a certain topic from the lecture. To ensure we preserve CA while transforming the exam,
and to get an overview of what types of task we have, we analyzed the tasks of an exemplary old exam.
As a result, we can assign LOs and a task type to each of the tasks. This enables us to make sure that
after the transformation to an e-exam the tasks still assess the same L.Os, and to find a way to transform
each of the task types.

The analysis of the teaching activities showed that the later lab sessions are suited best for familiar-
izing the students with the e-exam format. Therefore, we decided to move those tasks to YAPS instead
of using text editor and terminal as usual. Regarding the exam itself, we found ways to transform each
of the task categories we identified to an e-exam. RegExs can be used to detect correct solutions where
the solution is a short piece of source code. Yet, a RegEx match is a Boolean decision (i.e., either the
given answer matches the RegEx or not), so awarding a reduced amount of points for partially correct
solutions is not possible. Tasks that require writing a larger amount of source code can be assessed with
randomized property tests via QuickCheck [4] and a new static analysis tool that provides information on
used language features and functions. Tasks in which we ask students to prove, e.g., a certain property of
a function are a special case though. Here we make use of the proof puzzle task type available in YAPS,
with a new evaluation algorithm tailored to our needs. Finally, we address a concern that is not a direct
consequence of our analysis, but has been brought up during our discussions: what to do if a student
deems a task ambiguous and asks for clarification during the exam? Often, the task is not actually am-
biguous, but giving away any information could result in an unfair advantage for the student who asked.
Our solution to that is to extend YAPS by integrating a text input field for each task that students can use
in any way they want, e.g., for noting how they understood the task.

3 Realization

Taking a more technical perspective, in the following we summarize how we realized the plan derived
from the course analysis.

Apart from integrating GHC, to facilitate creating new programming tasks, we devised a template
that provides a common (visual) style, layout, and structure, so only task-specific text and code needs to
be added using the following workflow: 1. Write the task description into exercise.html. This is the page
that students see when selecting the task. 2. Write a short main function that executes the student code
into main.hs. Students can execute but not change this code during the exam. 3. Write any task-related
code or comments into functions.hs. This is the file in which students implement their solutions. It is
a good idea to summarize the task in a comment here, so students do not have to switch back and forth
between the task description and their solution. 4. Write tests for the student code into main_test.hs.
5. Write the code to execute the tests, parse and interpret their output, and report the results back to
YAPS into evaluate.py. This structure works for almost all tasks without modification, but is still flexible
enough to allow for deviations.

Figure 1a shows for two instances of the RegEx task type how they appear in the exam. During the
evaluation, the given text input is matched against the specified RegEx and the results are displayed to the
examiner as in Fig. 1b. Still, there is one problem with that implementation: what if the correct answer
is no answer? Envision a task “Given a certain list comprehension, does it compile, and if so, what is the
resulting list?”. We usually design such tasks as a combination of a single choice (for the decision) and

4 How to Derive an Electronic FP Exam from a Paper Exam

1. True 1. True

Answer | | Answer: [goo] e

2. ("False", not False) 2. ("False", not False)

Answer: | | Answer: [(Bool, Bool) 112p

(a) Exam view (b) Evaluation view

Figure 1: Regular expression task

a RegEx task (for the list). If the list comprehension is not valid, the correct answer would be to leave
the list input field empty, so we cannot distinguish between “no list” and “no answer.” As a remedy, we
allow RegEx tasks to optionally depend on a single choice task. The answer to the RegEx part is only
evaluated if an answer to the single choice task was given. Additionally, the input field is hidden as soon
as the student selects the negative option of the single choice part. This resolves the ambiguity, because
now we clearly know whether a task is answered.

In a proof puzzle, students construct their proof from given building blocks. Such a task is defined
as follows: First, we list all the available items, and optionally assign a weight to them. Then, we
specify possible solutions as sequences of selected items, and assign each solution a number of points.
If a student produces one of these solutions exactly, they get the full amount of points. In the original
version of this task type, the automatic evaluation is based on the edit distance between the given solution
attempt and the specified solution. During testing, this algorithm produced reasonable results. Yet, after
conducting the exam, we found that sometimes the resulting points were not congruent with how we
manually evaluated these tasks in the past, and that sometimes the results were even unfair. We could not
find a different assignment of weights to the items that produces better results, so we decided to devise a
new algorithm tailored to our needs. The new algorithm is based on finding correct sequences of items
and awards points according to the item weights. There is no subtraction of points, but sequences have
clearly-defined entry points (otherwise just using all items in a random order could yield the full amount
of points). As the entry points, we use the first items of the predefined solutions.

Many of our programming tasks have certain restrictions, e.g., students must (not) use a certain
language feature, or are only allowed to use certain functions. To be able to check these constraints
automatically we devised a new tool? that itself is written in Haskell. It takes a source code file as
input, analyzes it, and outputs certain information on each function, that is defined in the input file, in
JavaScript Object Notation (JSON). For each function, the program provides the following information:
the name of the function, its arguments, called and locally declared functions, and whether it uses pattern
matching/guarded equations/list comprehensions/case expressions.

To increase automation during exam creation we developed another tool® in Haskell that facilitates
writing the RegExs we need to automatically check many of the tasks. It reads a custom, specialized
specification language that we call Haskell Task RegEx Specification Language (HTRSL), and outputs
JavaScript compatible RegExs (with and without escaped backslashes). For an example, consider the
input ("Num" \\ a) "=>" "[" a "]" "->" ["String" | "[" "Char" "]"]. It represents the
function type (Num a) => [a] -> String that can be written in different ways, e.g., omitting the
parentheses, writing [Char] instead of String, or using a different name for the type variable a. All of
these variations need to be accepted by the generated RegEx. We use the BNF Converter* to generate a

Zhttps://collaborating.tuhh.de/cda7728/check-hs-task-restrictions
Shttps://collaborating.tuhh.de/cda7728/gen-hs-task-regexs
‘https://hackage.haskell.org/package/BNFC

https://collaborating.tuhh.de/cda7728/check-hs-task-restrictions
https://collaborating.tuhh.de/cda7728/gen-hs-task-regexs
https://hackage.haskell.org/package/BNFC

O. Liibke, K. Fuger, F. H. Bahnsen, K. Billerbeck, S. Schupp 5

40 — 40 — 40
30 | 30 1 30 | 1
20 | 20 - 20
ommanll vanlnl .00l
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(a) Statement 1 (b) Statement 2 (c) Statement 3

Figure 3: Poll results

parser for the language. This way, we obtain an abstract syntax tree that we can traverse to generate the
desired RegExs.

4 Evaluation

For evaluating the e-exam we aim to answer the following three questions: What is the degree of au-
tomation? Are students satisfied? Are examiners (we) satisfied?

To evaluate the degree of automation of the grading process, we divide all tasks in the e-exam into the
following categories: 1. Fully automated: human intervention is not required in any case. 2. Automated
if correct: human intervention is only required if the given answer was incorrect (to potentially award
partial points) 3. Partially automated: human intervention may even be necessary for correct answers.
4. Not automated: human intervention is required in any case. For an overview, the shares of each
category are visualized in Fig. 2.

To capture the view of the students,
we conducted a short poll immediately
after the exam. On the one hand this al- Fully automated
lowed us to capture the opinion of the Automated if correct A
students without delay and reduced ex-

ternal influence. On the other hand, we
thought that students may be unwilling

Not automated

to fill in an elaborate questionnaire just Partially automated
after finishing an exam. Therefore, we
decided to only ask three questions and Figure 2: Shares of each automation category

provide a text input field for additional

feedback. The poll read as follows: Rate the following statements from I to 5 (1 = fully disagree, 5 =
fully agree) 1. An e-exam is a right format for the lecture “Functional Programming”. 2. The program-
ming tasks with compiler support feel like a natural way to answer programming tasks. 3. In an e-exam,
I can express my thoughts as good as I could in a paper exam. Of the 77 exam participants, 73 answered
the poll. The results are shown in Fig. 3.

From our own experience, we found that creating an e-exam takes more time than creating a paper
exam because in addition to the tasks themselves, we also need to create the automated tests. However,
we can confidently expect that this overhead becomes smaller with maturing templates and tools. The
technical infrastructure (laptops, network access, etc.) was provided by our university, and we did not

6 How to Derive an Electronic FP Exam from a Paper Exam

have to concern ourselves with printing the exams, making sure they are complete, and distributing and
collecting them during the exam, so the process of conducting the exam is easier now. Furthermore, the
time required for grading is also reduced, because in most cases only tasks that were answered incorrectly
need to be examined.

S Summary & Future Work

We showed how a traditional paper exam with complex proof and programming tasks can be transformed
to an e-exam with automated grading, but without sacrificing CA. Through careful analysis of the course
and previous exams we can ensure that exam quality does not degrade during the transformation. For
realizing the e-exam we built upon existing software that we extended with a Haskell compiler, tasks
that can be checked with RegExs, a new algorithm to automatically evaluate proofs, and a general pur-
pose comment field for students. Additionally, we introduced two new tools that substantially support
automation: one that analyzes student code for task-relevant features, and one that generates suitable
RegExs from a more high-level description language. We achieved that almost all tasks can be graded
automatically at least in part, and students as well as examiners are largely satisfied with the resulting
e-exam.

In the future we want to investigate how a more fine-grained automated grading can be achieved
because currently awarding reduced amounts of points for partial solutions is often not possible (at least
not as reliably as we require it for an exam). Moreover, because creating an e-exam requires more effort
than creating a paper exam, we also want to explore how this process can be automated further. Our
vision is that most of the e-exam can be generated automatically from a single document that contains
the task texts, solutions, and point distribution.

References

[1] Fin Hendrik Bahnsen & Goerschwin Fey (2021): YAPS - Your Open Examination System for Activating and
emPowering Students. In: 2021 16th ICCSE, pp. 98-103, doi:10.1109/ICCSE51940.2021.9569549.

[2] Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thiemann, Stefan Wehr, Martin Gasbichler,
Michael Sperber, Marcus Crestani, Herbert Klaeren & Eric Knauel (2008): Htdp and Dmda in the Bat-
tlefield: A Case Study in First-Year Programming Instruction. In: Proc. of the 2008 FDPE, pp. 1-12,
doi:10.1145/1411260.1411262.

[3] John Biggs (1996): Enhancing Teaching through Constructive Alignment. Higher Education 32(3), pp. 347—
364, doi:10.1007/BF00138871.

[4] Koen Claessen & John Hughes (2000): QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: Proc. of the 5th ACM SIGPLAN ICFP, pp. 268-279, doi:10.1145/351240.351266.

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2004): The TeachScheme!
Project: Computing and Programming for Every Student. Computer Science Education 14(1), pp. 55-77,
doi:10.1076/csed.14.1.55.23499.

[6] David R. Krathwohl (2002): A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice 41(4), pp.
212-218, doi:10.1207/s15430421tip4104_2.

[7] Daniel Sitzmann, Karsten Kruse, Dennis Gallaun, Norwin Kubick, Bjorn Reinhold, Manuel Schnabel,
Lars Thoms, Helena Barbas & Sina Meiling (2022): Aufbau eines mobilen Testcenters fiir die Ham-
burger Hochschulen im Rahmen des Projekts MINTFIT E-Assessment. Die Hochschullehre 8, pp. 113-129,
doi:10.3278/HSL2208W.

https://doi.org/10.1109/ICCSE51940.2021.9569549
https://doi.org/10.1145/1411260.1411262
https://doi.org/10.1007/BF00138871
https://doi.org/10.1145/351240.351266
https://doi.org/10.1076/csed.14.1.55.23499
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.3278/HSL2208W

	Introduction
	Analysis of our Pre-E-Exam FP Course
	Realization
	Evaluation
	Summary & Future Work

