OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O oo 00000 0000000000 O

Cross validation

of the universe teachpack of Racket
in OCaml

Chihiro Uehara, Kenichi Asai

Department of Information Science
Ochanomizu University
Tokyo, Japan

2 June 2015

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
° 000000000000000 O 00 00000 0000000000 O

Our study

Cross validation of the universe framework in
OCaml
Creating the library that offers the same

functionality as the universe teachpack of Racket

(FFFK, 2009)
User testing

To confirm that the library is (to certain extent)
equally useful in OCaml as in Racket

Analyzing how the universe framework fits in
OCaml

We call the library we implemented the universe library
http://pllab.is.ocha.ac.jp/ asai/Universe/

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o ©00000000000000 O 00 00000 0000000000 O

Explanation of the universe library

Q
B
ée

Demo

e
*-X-e
[}

¢ Universe framework

e
*-X-e
[2)

How to use the universe library

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Demo

Stand-alone game made with the universe
library

94 lines
We use this game in the explanations in the
following slides

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Universe framework

Users identify states

Interaction is regarded as transition from old
states to new states
The state is called world in stand-alone games

All the information to specify the state uniquely
World-passing style that takes world around

e.g. universe teachpack

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000800000000000 O 00 00000 0000000000 O

World-passing style

wokld X ... — world

A draw function that creates a game screen
from the world

Event handlers that return a new world
according to the current world and events

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

World-passing style

Calculating a new world from the old world
does not involve mutation
The style goes well with the introductory courses
Students need to know only the function definition
and basic algebra, which are the main initial focus
of the introductory programming courses

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000008000000000 O 00 00000 0000000000 O

A stand-alone (client) program

wotld X ... — world

« ldentify what constitutes the world
« Draw that creates a game screen from the world
* Move_on_tick called at every time interval
* Change_on_mouse called on mouse click

« Registration of all definition to big bang

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000@000000000 O 00 00000 0000000000 O

A stand-alone (client) program

Identify what constitutes the world of the game

(x type of world *)
type world_t = ball_t list (* a list of balls *)

(* function called at every time interval x*)

(* move_on_tick : world_t -> (world_t, ’a) World.t *)
let move_on_tick world =

let new_world = List.map move_ball_on_tick world in

World new_world

The type (’a, ’b) World.t is defined in the library:

type (’a, ’b) t = World of ’a
| Package of ’a * °’b

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000@000000000 O 00 00000 0000000000 O

A stand-alone (client) program

Identify what constitutes the world of the game

(x type of world *)
type world_t = ball_t list (* a list of balls *)

(* function called at every time interval x*)

(* move_on_tick : world_t -> (world_t, ’a) World.t *)
let move_on_tick world =

let new_world = List.map move_ball_on_tick world in

World new_world

The type (’a, ’b) World.t is defined in the library:

type (’a, ’b) t = World of ’a
| Package of ’a * °’b

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000@000000000 O 00 00000 0000000000 O

A stand-alone (client) program

Identify what constitutes the world of the game

(x type of world *)
type world_t = ball_t list (* a list of balls *)

(* function called at every time interval x*)

(* move_on_tick : world_t -> (world_t, ’a) World.t *)
let move_on_tick world =

let new_world = List.map move_ball_on_tick world in

World new_world

The type (’a, ’b) World.t is defined in the library:

type (’a, ’b) t = World of ’a
| Package of ’a * °’b

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZI UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 0000000@0000000 O 00 00000 0000000000 O

A stand-alone (client) program

(* register necessary definitions to big_bang, and start *)

let _ =

big_bang initial_world (* initial value of world *)
“name:"BallGame" (* name of screen *)
“to_draw:draw (* draws a game screen along world *)
“width:widt (* width of the screen *)

“height:height (% height of the screen *)
“on_mouse:handle_mouse

(* called on mouse click *)
“on_tick:move_on_tick

(* called at every time interval *)
“rate:0.1 (* time interval to call on_tick *)
“stop_when:game_over

(* checks whether the game is over *)

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000008000000 O 00 00000 0000000000 O

Demo

Communicating two-person game made with
the universe library
166 lines
We use this game in the explanations in the
following slides

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000800000 O 00 00000 0000000000 O

Communicating games

A server and clients

ahia

world universe w
C - ,
(=

— server — ~
AN

i
i

e

V=

It is recommended to write a communication
diagram (Morazan, 2013)

Cross validation of the universe teachpack of Racket in OCaml

Agenda
o

HANOMIZU

UNIVE

Universe library

playerl

A mouse
is pressed

O R

Implementation User testing Result
0000000000e0000 O (e]e]

A game starts

server

ATORY

Analysis Conclusion
0000000000 O

join ——>

M

start

[playerl's —
new world

€ playerl’'s —
new world

— (%, y) -

<— playerl's —
new world

Cross validation of the universe teachpack of Racket in OCaml

—— player2’s
new world

player2
&—— join
start >
—— player2’s =
new world
—— player2’'s —
new world

ﬂ

HANOMIZU UNIVE T Y A S / ORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000008000 O 00 00000 0000000000 O

Worlds change at every time interval

playerl server player2
join —>
&— join
< start start >
[F— playerl’'s —T— player2’s —>
new world new world
€— playerl’s — 1 player2’s —
new world new world
+— (x, y) -
A mouse | i
is pressed €— playerl’s —1— player2’s —3)
new world new world

Cross validation of the universe teachpack of Racket in OCaml

Agenda
o

HANOMIZU

UNIVE

Universe library

O R

Implementation User testing Result
000000000000e00 O (e]e]

A mouse is pressed

ATORY

Analysis Conclusion
0000000000 O

new world

new world

playerl server player2
join —>
&— join
< start start >
[F— playerl’'s —T— player2’s —>
new world new world
< playerl’s —7— player2’s —3
new world new world
— (% y) ->
A mouse |
is pressed €— playerl’s —1— player2’s —3)

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000080 O 00 00000 0000000000 O

Communicating client program

(* type of the world *)
type world_t = ball_t list (* a list of my balls *)
* ball_t list (x a list of rival’s balls *)

(* function called when a message is received *)
(¥ receive : world_t —> world_t -> (world_t, ’a) World.t x*)
let receive world message = World message

(* function called on mouse click *)
(* handle_mouse : world_t -> int -> int -> string
-> (world_t, int * int) World.t *)
let handle_mouse world x y event =
if event = "button_down" then Package (world, (x, y))
else World world

Registration of all definition to big_bang

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000080 O 00 00000 0000000000 O

Communicating client program

(* type of the world *)
type world_t = ball_t list (* a list of my balls *)
* ball_t list (x a list of rival’s balls *)

(* function called when a message is received *)
(¥ receive : world_t —> world_t -> (world_t, ’a) World.t x*)
let receive world message = World message

(* function called on mouse click *)
(* handle_mouse : world_t -> int -> int -> string
-> (world_t, int * int) World.t *)
let handle_mouse world x y event =
if event = "button_down" then Package (world, (x, y))
else World world

Registration of all definition to big_bang

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000080 O 00 00000 0000000000 O

Communicating client program

(* type of the world *)
type world_t = ball_t list (* a list of my balls *)
* ball_t list (x a list of rival’s balls *)

(* function called when a message is received *)
(¥ receive : world_t —> world_t -> (world_t, ’a) World.t x*)
let receive world message = World message

(* function called on mouse click *)
(* handle_mouse : world_t -> int -> int -> string
-> (world_t, int * int) World.t *)
let handle_mouse world x y event =
if event = "button_down" then Package (world, (x, y))
else World world

Registration of all definition to big_bang

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000080 O 00 00000 0000000000 O

Communicating client program

(* type of the world *)
type world_t = ball_t list (* a list of my balls *)
* ball_t list (x a list of rival’s balls *)

(* function called when a message is received *)
(¥ receive : world_t —> world_t -> (world_t, ’a) World.t x*)
let receive world message = World message

(* function called on mouse click *)
(* handle_mouse : world_t -> int -> int -> string
-> (world_t, int * int) World.t *)
let handle_mouse world x y event =
if event = "button_down" then Package (world, (x, y))
else World world

Registration of all definition to big bang

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000008 O 00 00000 0000000000 O

A Server program

Keeps track of the state of all the world

(* type of the universe *)

(x a list of a pair of the client and its world x*)
type universe_t = (iworld_t * ball_t list) list

(* function called at every time interval *)
(* move_on_tick : universe_t ->
(universe_t, world_t) Universe.t *)
let move_on_tick universe =
let new_universe =
List.map
(fun (world_id, lob) ->
(world_id, List.map move_ball_on_tick lob))

universe in

send_messages new_universe

Registration of all definition to universe

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000008 O 00 00000 0000000000 O

A Server program

Keeps track of the state of all the world

(* type of the universe *)

(x a list of a pair of the client and its world x*)
type universe_t = (iworld_t * ball_t list) list

(* function called at every time interval *)
(* move_on_tick : universe_t ->
(universe_t, world_t) Universe.t *)
let move_on_tick universe =
let new_universe =
List.map
(fun (world_id, lob) ->
(world_id, List.map move_ball_on_tick lob))

universe in

send_messages new_universe

Registration of all definition to universe

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000008 O 00 00000 0000000000 O

A Server program

Keeps track of the state of all the world

(* type of the universe *)

(x a list of a pair of the client and its world x*)
type universe_t = (iworld_t * ball_t list) list

(* function called at every time interval *)
(* move_on_tick : universe_t ->
(universe_t, world_t) Universe.t *)
let move_on_tick universe =
let new_universe =
List.map
(fun (world_id, lob) ->
(world_id, List.map move_ball_on_tick lob))

universe in

send_messages new_universe

Registration of all definition to universe

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZI UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 @ [e]e] 00000 0000000000 O

Implementation of the universe library

Used in Used by users
World module and to implement
Universe module games

Universe
module

World

module

Socket

module

' Images and handling of events are implemented using
LablGtk2, the OCaml interface to GTK-+

#* The Socket module is implemented using the Unix
module in the standard library

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU

UNIVERSITY

AsAl LABORATORY
Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O °0 00000 0000000000 O

User testing

A class to create communicating games using
the library

About 2 months once a week

Year | Number C OCaml| Racket
1 2 O X A(1)
2 10 O O A(3)
3 3 O O O3)

They formed six teams each consisting of two
or three students

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis
o

000000000000000 O oe 00000 0000000000

Games created by students

Three 3rd-year students Three 2nd-year students Two 2nd-year students
EE ’
)

Two 2nd-year students Three 2nd-year students Two 1st-year students

LY.T, A R tag Gama,

i e*

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 90000 0000000000 O

Comments on the universe library

After the class finished, we asked students:
Advantages of the universe library (advantages)
Shortcomings of the universe library (shortcomings)
How they compare the universe library with the
universe teachpack of Racket (comparison)

Other comments (others)

We consider
What turned out to be good
What students find difficult
The universe library in education

We use some of the comments today
All comments are in the paper

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY

AsAl LABORATORY
Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

1. What turned out to be good

: Ease of use due to the interface which is similar
to the universe teahcpack (advantages, 15)

: It is attractive that | can see the result of

: what | program in the screen (others, 2)

No support for sounds (shortcomings, 2)
This came from their desire to make better games

One of big reasons for enthusiasm is the
attractive environment provided by the library

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

2. What students find difficult

: To synchronize time and values (others, 1)
By struggling with this problem, the users must
have deepen their understanding of synchronization
It is a good platform to encourage students to
think about synchronization

Some games maintained time events in each
client independently and failed synchronization

The universe framework does not necessarily
lead to a uniform solution
We gave brief explanation, but should have
explained more

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

3. The universe library in education

13 students had already finished the
introductory OCaml course
They found programming in the library interesting
They took part in the course enthusiastically and
with success
The universe library is suitable for the CS2 course

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 0000® 0000000000 O

3. The universe library in education

Two students programmed in OCaml for the
first time
They created a working communicating game
The universe library is easy enough for beginners
We have not yet incorporated the universe library
into our introductory OCaml course, but the library
appears to be ready to be included in it

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 €000000000 O

Analysis

 How the universe framework fits in OCaml

1. Influence of static typing
Debugging

Testing

Error messages

=W

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0@00000000 O

1. Influence of static typing

When we change definition of the world or the
universe, we need to make changes to all the
places where they are mentioned
Racket provides a special mechanism to check the
shape of the world at runtime
With static typing, they are detected as type
errors
Second-year and third-year students could detect
them as type errors because the are used to OCaml
We didn’t need to make a special mechanism as
Racket

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

1. Influence of static typing

: It is hard both to fix the type of world and
universe at first and to change them later
(comparison, 2)

Regardless of the language, students struggle to
make a suitable definition of world and universe
Static typing does help searching for the necessary
changes when the type of world and universe
changes

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

2. Debugging

Racket shows the current world in a separate

window 000 w. 000
'(posn 45 45)

game window current world

To show the contents of world in OCaml, one
writes explicitly printing statements
Printing is typically covered only at the end of
introductory functional language courses
It is desirable to support the functionality as in
Racket in the universe library

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

3. Testing

Testing is important (HtDP, 2001)

We have not come up with a test method to check
whether interactive games are running as specified

We can do unit testing (as in Racket)

We instruct students to write basic test cases:
let test = (program = result)

Racket integrated environment displays the test coverage
by highlighting not executed parts

We have not tried a coverage tool for OCaml
(Bisect) yet with the universe library

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

4. Error messages

Readable error messages are important to understand
what is going on in a program, especially for beginners
Type error
Standard type errors arise (as you expect)
The type debugger (A, 2014) helps navigating the
user to the source of the type error by asking
questions
Runtime error
We have no support for runtime errors

: Error messages are hard to understand
(shortcomings, 4)
considered in detail in next slides

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Error messages for the runtime error

A specified image file was not found
The user launches a client before a server

A server stops while clients are still running

Exception in the call-back functions
Type mismatch of sender and receiver

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Error messages for the runtime error

A specified image file was not found

The user launches a client before a server
The user gets a readable error message

A server stops while clients are still running

Exception in the call-back functions
Type mismatch of sender and receiver

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Error messages for the runtime error

A specified image file was not found

The user launches a client before a server
The user gets a readable error message

A server stops while clients are still running

Clients continue to run except that they no longer
receive any messages from the server

When they send messages to the server, no error
arises but the sent messages are simply ignored
The user doesn't get any error message

Exception in the call-back functions
Type mismatch of sender and receiver

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Error messages for the runtime error

A specified image file was not found

The user launches a client before a server
The user gets a readable error message

A server stops while clients are still running

Clients continue to run except that they no longer
receive any messages from the server

When they send messages to the server, no error
arises but the sent messages are simply ignored
The user doesn't get any error message

Exception in the call-back functions
Type mismatch of sender and receiver

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Exception in the call-back functions

In callback for signal button_press_event,
uncaught exception: Not_Found

It does not show the name of the user-defined function
that raised the exception

It shows the signal name that is used internally in the

underlying GTK+

It is hard for beginners to understand the error message
In on_mouse function, uncaught exception: Not_Found

To wrap the functions with a try ...with

When they are registered to show which handler
raised an exception

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Exception in the call-back functions

In callback for signal button_press_event,
uncaught exception: Not_Found

It does not show the name of the user-defined function
that raised the exception

It shows the signal name that is used internally in the

underlying GTK+

It is hard for beginners to understand the error message
In on_mouse function, uncaught exception: Not_Found

To wrap the functions with a try ...with

When they are registered to show which handler
raised an exception

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Exception in the call-back functions

In callback for signal button_press_event,
uncaught exception: Not_Found

It does not show the name of the user-defined function
that raised the exception

It shows the signal name that is used internally in the

underlying GTK+

It is hard for beginners to understand the error message
In on_mouse function, uncaught exception: Not_Found

To wrap the functions with a try ...with

When they are registered to show which handler
raised an exception

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 O

Type mismatch of sender and receiver

Messages are marshalled before sent

The type of the marshalled data is lost during
communication

If a program unmarshalls received data as a
value of different type
The program crashes with Segmentation fault

{Marshal.from channel chan : type)

Anything can happen at run-time if the object in the file
does not belong to the given type (from OCaml manual)

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 000000000 O

Type mismatch of sender and receiver

To check the consistency of the type of
messages statically appears to be
fundamentally difficult

Telling students to check the type of messages
whenever Segmentation fault occurs

Cross validation of the universe teachpack of Racket in OCaml

OCHANOMIZU UNIVERSITY AsAl LABORATORY

Agenda Universe library Implementation User testing Result Analysis Conclusion
o 000000000000000 O 00 00000 0000000000 @
Conclusi

Cross validation of the universe framework in

OCaml

The universe library is a nice environment for
students to write interactive games, as the
universe teachpack

There is room for improvement, especially in
error messages

Most of the students who took the course had
already finished the CS1 course

We have not incorporated the universe library into
the CS1 course yet (as was done in HtDP2e)

Cross validation of the universe teachpack of Racket in OCaml

	Agenda
	1

	Universe library
	1

	Implementation
	1

	User testing
	1

	Result
	1

	Analysis
	1

	Conclusion
	1

