THEY ALREADY KNOW THE SYNTAX!

The Case for Spreadsheets in Programming Education

Learning Syntax is Known to be an Obstacle in Programming Education

Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)

Scratch [MIT Media Lab] Hedy [Felienne Hermans, Leiden University]

X
-10lx| 0 Home Hedy Press Contact =
dotiirroll o @D File Edit Share Help &% || % .-

~ =L

Level 1 Code Explanation

Motion Control

Looks Sensing

In Level 1 you can use these commands
Sound Dperators

Pan Variables Print something with print. Ask something with ask.

Exampile: print Hello welcome to Hedy! hi Example: ask What Is your favorite color? hi
nmove steps e S

forever
turn ¥ degreas
change x by

turn 3 B degrees = — Repeat something using echo.

) S Exampie: echo so your favorite color is... Try thi
point in direction m i o |of Bl =

point towards by

ask Who is this story about?

echo This story is about

print He walks in the forest

echo He is a little scared,

print He hears funny sounds everywhere

This story is about Charles
He walks in the forest

gotox:@y:

go to

glide secs to x: @ ¥

of Bl

2 | by I

He is a little scared, Charles
He hears funny sounds everywhere

print Is this haunted forest?|

Who is this story about?

Charles m

change x by i L of Bl

set x to B

change y by

of Bl
set y to a

Back to basics - let’'s reminisce our early computing education:

Math Abstractions ... Baby Steps

Positional numeral system, operations, operator precedence (!) ...

Math Abstractions ...

11 +
31

) 6x7 =42

217+3/7=517

9x(3 +4) =63
1,000,000 — 997 = 999,003

The turtles ... they keep ... multiplying (!) — here we are, at the end of middle school and early high school:

Math Abstractions

E = mc?

y=m-x-+gq

2

sinlx + cos?r =1

sin x
COS I

(a —b)(a+b) = a* — b

D = /(z1 — x2)® + (th — y2)?
F=@ mm

= tan x

How much more “syntax” must we feed students to start learning programming?

WHATIFITOLD)YOU

\

'I'IIE&AIIIEAIIY KNOW THE SYNTRK;

Note: G.A.M.N. stands for Generally accepted Math notation

Students Already Know The Syntax!

Strin
Raise to Power | Multiplication Division Modulo Addition Subtraction =
Concatenation

MATH xy x*y x+=y x/y xmody xX+y Xy X-Yy
FORTRAN x ¥y x/y mod(x, y) X +y X -y x//y
LISP (*xvy) (/ xvy) (mod x y) (+xv) (-xvy) (concatenate X)
C/C++ , x ¥y x/y x %y X +y X-y X +y
Haskell y x*y x ¥y x/y mod x y X +y X -y X ++y
Python X ¥y x ¥y x/y x %y Xty X -y X +y
Java Math.pow(x, y) x ¥y x/y x %y X +y X -y X +y

* %

JavaScript X x/ x %y X + X - X +y
y Yy Y

y
OCaml Xy § 5, : x mod y X+y X+.y X-y X-.y xNy
MS-Excel xNy

mod(x, y) Xty X -y x &y

.. OK, sure, but those are just expressions. That's not programming, right! I mean, expressions aren’t enough, right! =»

A User-Centred Approach to Functions in Excel
30" June 2003

Simon Peyton Jones Alan Blackwell Margaret Burnett
Microsoft Research Cambridge University Oregon State University

“It may seem odd to describe a spreadsheet as a programming language. Indeed, one of the great merits of spreadsheets is
that users need not think of themselves as doing “programming”, let alone functional programming — rather, they simply
“write formulae” or “build a model”. However, one can imagine printing the cells of a spreadsheet in textual form, like this:

Al =3
A2 = A1-32
A3=A2*5/9

and then it plainly is a (functional) program.”

“Just expressions’: yes, to program with spreadsheets all the syntax you need to know is that of expressions!

-
Critique of the Traditional Spreadsheet Core

- Lack of functional abstraction

« Considerable research work has been done on this
« December 3, 2020: Microsoft Research announced LAMBDA

« Overly simplistic type system
- All top-level variables must be a worksheet
- Worksheets are non-composable cell containers
« All cells are unitype and must be referenced via coordinates
« A1 notation should be considered harmful

- Entanglement of model and visualization
- Worksheets are the only true variables of the core
- They are containers that hold state, which includes unreduced expressions

- Worksheets are also the primary element of the presentation
« They play an important role as Ul layout managers

ZenSheet / Lilly

ZenSheet ™ Studio X

& C @ localhos

Worksheet x

®

0.127881630
0.327881630
0.527881630
0.727881630
0.927881630
1.127881630
1.327881630
1.627881630
1.727881630
1.927881630

o ok W N = O

~

start
0.12788163026882965

sys.cycle(0);

0.127533359
0322038235
0.503704464
0.665289585
0.800351710
0.903506338

D

check sin & cos

0.991834282
0.946726663
0.863876040
0.746585406
0.599530767
0.428574729

0.970641019 [N}

0.999079306
0.987687453
0.936919619

0.0429015256
-0.156440066
-0.349544886

kebolt Research

1
1
1
1
1

1.000000000
1
1
1.000000000
1

=

exp

1.136418477
1.388024662
1.695337151
2.070689472
2.529145833
3.089105696
3773042217
4.608404171
5.628717565
6.874931159

-2.056650206
-1.115102619
-0.638883206
-0.317616840
-0.074851108

0.120341210
0283584913
0.423882221
0.546896167
0.656421799

Test

G
check exp & In

X Load

& save

© Tick

Types

ZT 1) T — null | error | bool | number | string
ZT2)T— fun(T, . T)=>T
ZT3)T—array[. ...]==T

ZT4) T — struct(T, ... T)

ZTS5)T—lazy T

ZT6) T — var

ZT.7) T — <symbol=

Expressions

XL51)E — 7| <error= | true | false | <number= | <string>
XLS3)E — < Al = | <gymbol=1< Al =

ZSE 1) E — <symbol=

ZSE2) E — MT =symbol=, ... T <symbol=) -= E
ZSE.3)E — E(E. ... E)

ZSE4)E — (E.E)

ZSE.S)E — [E. ... E]

ZSE.6)E — E[E. ... E]

ZSET)E—EE

ZSEB)E—E.E

ZSE9)E — E

Actions

ZSA 1) A — type <symbol==T:
ZSA2) A — T <symbol= = E:
ZSAA—E=E;

Listing 3: abstract syntax of Lilly

But to achieve this result we had to extend a traditional model of computing

Extending Christopher Strachey’s Model

Traditional = Lilly
b wg
& LVALUE \/ & LVALUE
¢ CVALUE . "\ ¢ CVALUE
¢ RVALUE ¢ RVALUE
Assume @ has l-value, then: Assume @ has lvalue, then:
¢ RVALUE(p) = CVALUE(LVALUE(p)) ¢ RVALUE(@) = RVALUE(CVALUE(LVALUE(¢)))
Reassignment: Reassignment:
& <lhs>:= <rhs>; & <lhs> := <rhs>;
¢ Post: CVALUE p (<lhs>) = RVALUE b (<rhs>) ¢ Post: CVALUE p (<lhs>) = RVALUE b (<rhs>)

Lilly natively supports a function formula(¢) that returns CVALUE(¢p) without computing RVALUE(¢p)

Experience Report: Lilly in Action

Our Experience Report:
Complementing Programming Education with Lilly and ZenSheet

- Setting
 Online classes (university is still closed) with no technical support

 Students set up their own lab, with material and assistance provided by yours truly
 GitHub (https://github.com/), MSYS2 (https://www.msys2.org/), ...

« Students must learn C in 10 weeks
 Nearly all of them have no programming experience

« An old professor and I have been advocating to modernize the curriculum
« ...in fact, we have already started to do so, under the RADAR C\g‘)
« ...and have been gaining support from researchers and institutions W

- Lilly will officially be part of the course in the period that starts next week

ZenSheet REPL - Beta 0.1
Connecting via net protocol to localhost:3899 ...

<ZR>:data:=[0,1,42, 67,3,7,997, 8];

LIIIy REPL Session ACK: :: data := [0, 1, 42, 67, 3, 7, 997, 8];

< ZR > filter(fn(x) -> x < 50, data)
OK: filter(fn(x) -> x < 50, data) ==> [0, 1, 42, 3, 7, 8]

The response to an action can be an ACK, < ZR > :: predicate := fn(x) -> x < 50:
followed by an echo of the command, or an ACK: = predicate = f(x) > x < 50 :
ERROR with a descriptive message.

< ZR > :: z :='filter(predicate, data)’;
The response to an expression can be an OK ACK: :: z := "filter(predicate, data)’;
followed by a description of the reduction, or an

ERROR with a descriptive message. <ZR>z
OK:z==>[0, 1,42, 3,7, §]

Variable z in this session is initialized with a quoted < ZR > predicate = fn(x) -> x % 2 = 0;
expression, therefore inferred to have a lazy type ACK: predicate := fn(x) -> X % 2 = 0: ’

<13:7/7=>7>12
OK: z==>][0, 42, 8]

Higher Order Functional Abstraction Example
User implementation of map, filter, fold

// map
:: mapz := fn(f, seq) ->
if(empty(seq), seq, cons(f(head(seq)), mapz(f, tail(seq))));

// filter
:: filterz := fn(pred, seq) ->
if(empty(seq), seq, if(pred(head(seq)), cons(head(seq), filterz(pred, tail(seq))), filterz(pred, tail(seq))));

// fold
:: foldz := fn(mfn, init, seq) ->
if(empty(seq), init, foldz(mfn, mfn(init, head(seq)), tail(seq)));

Higher Order Functions: a Reactive Pipeline Model

/17
/// hof.sym

/17
/// higher order functions example: reactive pipeline model

/17

array[] => array[] => lazy double input := [
['uniform()', 'uniform()', 'uniform()', ‘uniform()', ‘uniform()', ‘'uniform()'],
['uniform()', 'uniform()', 'uniform()', ‘'uniform()', ‘uniform()', 'uniform()'],

["uniform()", 'uniform()', 'uniform()', ‘'uniform()', ‘uniform()', 'uniform()']

15

lazy negative := '/.(x) -> x < @';
lazy positive := '/.(x) -> x >= 0"';

lazy mapped := "map(/.(row) -> map(/.(x) -> 2 * x - 1, row), input)"';
lazy filtered := 'map(/.(row) -> filter(positive, row), mapped)’;

lazy reduced := 'map(/.(row) -> sum(row), filtered)';

eactive Pipeline Model - rendered in ZenSheet Ul

b ZenSheet ™ Studio X x +
& C @ localhost8080/# *
fi Apps
ZenSheet™ Studio X Test X load & Save @ Tick
o Functional Pipeline x

input

0.121190018 0.627119143 0.072111896 0.941111862 0.967125672 0.409078908
filtered 0.452751037 0.949279897 0.596298085 0.812404829 0.898535214 0.519911623

T 0.007808876 0.639557580 0.907334594 0.5689554482 0.637138716 0.1565659810

mapped
negative

it
LG 0.757619964 0.254238286 0.855776208 0.882223724 0.934251344 0.181842184

E=duced -0.094497925 0.898559795 0.192596170 0.624809658 0.797070428 0.039823246
-0.984382248 0.279115160 0.814669187 0.179108964 0.274277431 -0.688680379

filtered

0.254238286 0.882223724 0.934251344
0.898559795 0.192596170 0.624809658 0.797070428 0.039823246
0.279115160 0.814669187 0.179108964 0.274277431

reduced

2.070713355
2.552859297
1.547170743

sys.cycle(0);

Copyright @ Lakebolt Research

Findings and Preliminary Decisions

 Post grade survey: nearly all students reported that Lilly was valuable or very valuable to
their learning experience. No one considered it detrimental.

- Tech issues: deployment turned out to be even more of a challenge than anticipated ®

« Focusing on concepts and paradigms, showing how they are supported in different
languages, reduces the “are we learning the right language” worries.

- Adding Lilly and JavaScript appears to help overcome syntax-related anxiety.
« We are replacing C with C++ (already used C++ last trimester) even more.

« We also plan to use Haskell to show examples of parametric polymorphism.

References

« [1] F. Hermans, “Keynote: How to teach programming and other things?,” https://www.youtube.com/watch?v=UJxXgugvXmE, 2018..

« [2] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach to functions in Excel,” in ACM SIGPLAN Notices, 2003, vol. 38,
no. 9, pp. 165-176, doi: 10.1145/944746.944721.

« [3] R. Abraham, M. Burnett, and M. Erwig, “Spreadsheet Programming,” in Wiley Encyclopedia of Computer Science and Engineering,
2009, pp. 1-10.

 [4] S. P.Jones, M. Burnett, and A. Blackwell, “Spreadsheets : functional programming for the masses.”
https://www.slideshare.net/kfrdbs/peyton-jones.

« [5] Microsoft Research, “Future of Spreadsheeting,” 2019. https://www.microsoft.com/en-us/research/video/future-of-
spreadsheeting/.

- [6] Microsoft Research, “LAMBDA,” 2020. https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-
formulas-into-custom-functions/ba-p/1925546.

« [7] M. McCutchen, J. Borghouts, A. D. Gordon, and S. P. Jones, “Elastic Sheet-Defined Functions : Generalising Spreadsheet Functions
to Variable-Size Input Arrays *,” vol. 1, no. March, 2018.

 [8] M. Figuera, “ZenSheet Studio: A Spreadsheet-Inspired Environment for Reactive Computing,” in SPLASH Companion 2017 -
Proceedings Companion of the 2017 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity, Oct. 2017, pp. 33-35, doi: 10.1145/3135932.3135949.

- [9] E. Alda and M. Figuera, “ZenSheet: a live programming environment for reactive computing,” 2017.
https://2017.splashcon.org/details/live-2017 /5 /ZenSheet-a-live-programming-environment-for-reactive-computing.

« [10] Microsoft Research, “Preview of Dynamic Arrays in Excel,” 2018. https://techcommunity.microsoft.com/t5/excel-
blog/preview-of-dynamic-arrays-in-excel /ba-p/252944.

« [11]]. G. Siek and W. Taha, “Gradual typing for objects,” in ECOOP’07, 2007, pp. 2-27.
- [12] E. Alda and |. Lopéz, “Lambda Days 2020,” 2020. https://www.youtube.com/watch?v=mJa0_gKE6xo.

	Slide 1: They Already Know the Syntax!
	Slide 2: Learning Syntax is Known to be an Obstacle in Programming Education Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)
	Slide 3: Math Abstractions … Baby Steps
	Slide 4: Math Abstractions …
	Slide 5: Math Abstractions
	Slide 6
	Slide 7: Students Already Know (most of) The Syntax!
	Slide 8
	Slide 9: Critique of the Traditional Spreadsheet Core
	Slide 10: ZenSheet / Lilly
	Slide 11: Extending Christopher Strachey’s Model
	Slide 12: Experience Report: Lilly in Action
	Slide 13: Our Experience Report: Complementing Programming Education with Lilly and ZenSheet
	Slide 14: Lilly REPL Session The response to an action can be an ACK, followed by an echo of the command, or an ERROR with a descriptive message. The response to an expression can be an OK followed by a description of the reduction, or an ERROR with a
	Slide 15: Higher Order Functional Abstraction Example User implementation of map, filter, fold
	Slide 16: Higher Order Functions: a Reactive Pipeline Model
	Slide 17: Reactive Pipeline Model – rendered in ZenSheet UI
	Slide 18: Findings and Preliminary Decisions
	Slide 19: References

