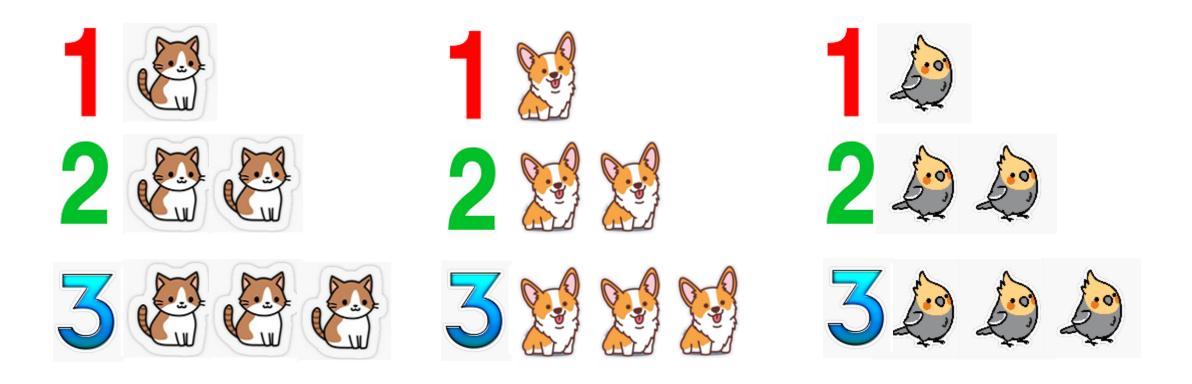

THEY ALREADY KNOW THE SYNTAX!

The Case for Spreadsheets in Programming Education

Learning Syntax is Known to be an Obstacle in Programming Education

Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)

Scratch [MIT Media Lab]

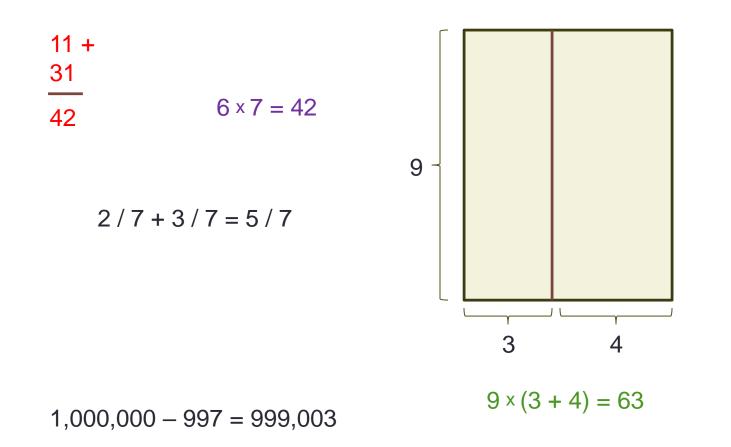


Hedy [Felienne Hermans, Leiden University]

	Code	Explana		
Print so	mething v	hese comma vith print. elcome to Heo	Try this	Ask something with ask. Example: ask What is your favorite color?
1.		g using ech r favorite color	Try this	

Back to basics - let's reminisce our early computing education:

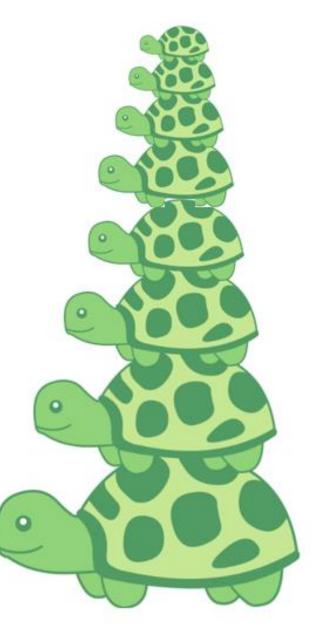
Math Abstractions ... Baby Steps

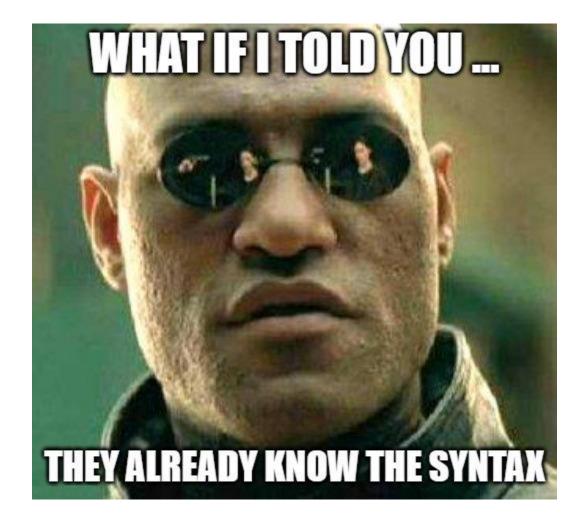


I am one baby syntax turtle ->

Positional numeral system, operations, operator precedence (!) ...

Math Abstractions ...




The turtles ... they keep ... multiplying (!) – here we are, at the end of middle school and early high school:

Math Abstractions

 $E = mc^2$ $y = m \cdot x + q$ $\sin^2 x + \cos^2 x = 1$ $\frac{\sin x}{\cos x} = tan x$ $(a-b)(a+b) = a^2 - b^2$ $D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $F = G \frac{m_1 m_2}{d^2}$

How much *more* "syntax" must we feed students to start learning programming?

Note: G.A.M.N. stands for Generally accepted Math notation

Students Already Know (most of) The Syntax!

	Raise to Power	Multiplication	Division	Modulo	Addition	Subtraction	String Concatenation	
MATH	x ^y	<i>xy</i> <i>x</i> * <i>y</i>	$x \div y \mid x/y$	x mod y	x + y	x - y	$xy \mid x \cdot y$	
FORTRAN	x ** y	x * y	x / y	mod(x, y)	x + y	x – y	x // y	
LISP	(pow x y)	(* x y)	(/ x y)	(mod x y)	(+ x y)	(– x y)	(concatenate x y)	
C / C++	pow(x, y)	x * y	x / y	x % y	x + y	x – y	x + y	
Haskell	x^y x ** y	x * y	x / y	mod x y	x + y	x – y	x ++ y	
Python	x ** y	x * y	x / y	x % y	x + y	x – y	x + y	
Java	Math.pow(x, y)	x * y	x / y	x % y	x + y	x – y	x + y	
JavaScript	x ** y	x * y	x / y	x % y	x + y	x – y	x + y	
OCaml	x ** y	x * y x *. y	x / y x /. y	x mod y	x + y x +. y	x - y x y	x ^ y	
MS-Excel	x ^ y	x * y	x / y	mod(x, y)	x + y	x – y	x & y	

.:. OK, sure, but those are *just expressions*. That's not programming, right? I mean, expressions aren't enough, right? **>**

A User-Centred Approach to Functions in Excel 30th June 2003

Simon Peyton Jones Microsoft Research Alan Blackwell Cambridge University Margaret Burnett Oregon State University

"It may seem odd to describe a spreadsheet as a programming language. Indeed, one of the great merits of spreadsheets is that users need not think of themselves as doing "programming", let alone functional programming — rather, they simply "write formulae" or "build a model". However, one can imagine printing the cells of a spreadsheet in textual form, like this:

A1 = 3

A2 = A1-32

A3 = A2 * 5/9

and then it plainly is a (functional) program."

"just expressions": yes, to program with spreadsheets all the syntax you need to know is that of expressions!

But traditional spreadsheets have issues that make them unacceptable for education and other purposes ...

Critique of the Traditional Spreadsheet Core

Lack of functional abstraction

- Considerable research work has been done on this
- December 3rd, 2020: Microsoft Research announced LAMBDA

Overly simplistic type system

- All top-level variables must be a worksheet
- Worksheets are non-composable cell containers
- All cells are unitype and must be referenced via coordinates
- A1 notation should be considered harmful

Entanglement of model and visualization

- Worksheets are the only true variables of the core
 - They are containers that hold state, which includes unreduced expressions
- Worksheets are also the primary element of the presentation
 - They play an important role as UI layout managers

A language-centric redesign of spreadsheets has been shown to work well

ZenSheet / Lilly

ZenSheet supports composable data structures and functional abstraction. 2D arrays can be used as worksheets: it truly generalizes spreadsheets!

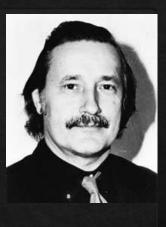
				ZerobeetWo	tudia V			📀 Test 🛛 🛓 Load	🛓 Save			
				ZenSheet™ S				U Test 🔤 Load	Save			
EXPRESSION 🗢	Worksheet x +											
α + β	W											
SYMBOLS	0 @		В	С	D	E	F	G				
w			sin	COS	check sin & cos	exp	In	check exp & In				
start		0.127881630										
step		0.327881630										
	4	0.527881630					-0.638883206 -0.317616840					
	5	0.927881630										
	7	1.127881630										
	8	1.327881630			1							
	9	1.527881630			1		0.423882221	1				
	10	1.727881630	0.987687453	-0.156440066	1.00000000	5.628717565	0.546896167	1				
	11	1.927881630	0.936919619	-0.349544886		6.874931159	0.656421799	1				
	start step											
	0.12788163026882965			0.1 S								

Types ZT.1) $T \rightarrow null | error | bool | number | string$ ZT.2) $T \rightarrow fun(T, ..., T) => T$ ZT.3) $T \rightarrow array[, ...,] => T$ ZT.4) $T \rightarrow struct(T, ..., T)$ ZT.5) $T \rightarrow lazy T$ ZT.6) T \rightarrow var ZT.7) T $\rightarrow <$ symbol> Expressions XLS.1) $E \rightarrow ? | < error > | true | false | < number > | < string >$ XLS.3) $E \rightarrow \langle A1 \rangle | \langle symbol \rangle | \langle A1 \rangle$ ZSE.1) $E \rightarrow \langle symbol \rangle$ ZSE.2) $E \rightarrow \lambda(T \leq symbol >, ..., T \leq symbol >) \rightarrow E$ ZSE.3) $E \rightarrow E(E, ..., E)$ ZSE.4) $E \rightarrow (E, ..., E)$ ZSE.5) $E \rightarrow [E, ..., E]$ ZSE.6) $E \rightarrow E[E, ..., E]$ ZSE.7) $E \rightarrow E:E$ ZSE.8) $E \rightarrow E..E$ ZSE.9) $E \rightarrow E'$ Actions ZSA.1) A \rightarrow type <symbol> = T; ZSA.2) $A \rightarrow T \leq symbol \geq := E;$ $ZSA.3) A \rightarrow E := E;$

Listing 3: abstract syntax of Lilly

But to achieve this result we had to extend a traditional model of computing

Extending Christopher Strachey's Model


Traditional

- ♦ LVALUE
- ♦ CVALUE
- ♦ RVALUE

Assume ϕ has l-value, then:

Reassignment:

- \$ <\lhs> := <rhs>;
 - ♦ Post: CVALUE p (<lhs>) = RVALUE b (<rhs>)

Lilly

- ♦ LVALUE
- ♦ CVALUE
- ♦ RVALUE

Assume φ has l-value, then:

RVALUE $(\phi) =$ **RVALUE**(**CVALUE**(**LVALUE** $(\phi)))$

Reassignment:

- \$ <\lhs> := <rhs>;
 - ♦ Post: CVALUE p (<lhs>) = RVALUE b (<rhs>)

Lilly natively supports a function *formula*(φ) that returns CVALUE(φ) without computing RVALUE(φ)

Experience Report: Lilly in Action

Our Experience Report:

Complementing Programming Education with Lilly and ZenSheet

A

Setting

- Online classes (university is still closed) with no technical support
 - Students set up their own lab, with material and assistance provided by yours truly
 - GitHub (https://github.com/), MSYS2 (https://www.msys2.org/), ...
- Students must learn C in 10 weeks
 - Nearly all of them have no programming experience
- An old professor and I have been advocating to modernize the curriculum
 - ... in fact, we have already started to do so, under the RADAR
 - ... and have been gaining support from researchers and institutions

Lilly REPL Session

The response to an **action** can be an ACK, followed by an echo of the command, or an ERROR with a descriptive message.

The response to an **expression** can be an OK followed by a description of the reduction, or an ERROR with a descriptive message.

Variable z in this session is initialized with a quoted expression, therefore inferred to have a lazy type

ZenSheet REPL - Beta 0.1 Connecting via net protocol to localhost:3899 ...

< ZR > :: data := [0, 1, 42, 67, 3, 7, 997, 8]; ACK: :: data := [0, 1, 42, 67, 3, 7, 997, 8];

< ZR > filter(fn(x) -> x < 50, data) OK: filter(fn(x) -> x < 50, data) ==> [0, 1, 42, 3, 7, 8]

< ZR > :: predicate := fn(x) -> x < 50; ACK: :: predicate := fn(x) -> x < 50;

< ZR > :: z := 'filter(predicate, data)'; ACK: :: z := 'filter(predicate, data)';

< ZR > z OK: z ==> [0, 1, 42, 3, 7, 8]

< ZR > predicate := fn(x) -> x % 2 = 0; ACK: predicate := fn(x) -> x % 2 = 0;

<13: 7/7 => 7> z OK: z ==> [0, 42, 8]

Higher Order Functional Abstraction Example User implementation of map, filter, fold

// filter

```
:: filterz := fn(pred, seq) ->
```

if(empty(seq), seq, if(pred(head(seq)), cons(head(seq), filterz(pred, tail(seq))), filterz(pred, tail(seq))));

Higher Order Functions: a Reactive Pipeline Model

```
111
/// hof.sym
///
/// higher order functions example: reactive pipeline model
///
array[] => array[] => lazy double input := [
  ['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()'],
  ['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()'],
  ['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()']
];
lazy var negative := '/.(x) \rightarrow x < 0';
lazy var positive := '/.(x) \rightarrow x \ge 0';
lazy var mapped := 'map(/.(row) \rightarrow map(/.(x) \rightarrow 2 * x - 1, row), input)';
lazy var filtered := 'map(/.(row) -> filter(positive, row), mapped)';
lazy var reduced := 'map(/.(row) -> sum(row), filtered)';
```

Reactive Pipeline Model – rendered in ZenSheet UI

ZenSł	heet ™ Studio X	× +										- 0
	C 🛈 localhost:808	0/#										🖈 🛛 🔀 🗌 🥵
Apps												
					Zen	Sheet™ Studio X				💿 Test 🛛 🛓 Load	🛓 Save	🕑 Tick 💙 Reset
ant	EXPRESSION 🗘	Functional Pipeline 🗴 🛨										 L
ant		input										^
тау	α + β											
	SYMBOLS		0	0.121190018	0.627119143	0.072111896	0.941111862	0.967125672	0.409078908			
ву	filtered			0.452751037	0.949279897	0.596298085	0.812404829	0.898535214	0.519911623			
eet	input		2	0.007808876	0.639557580	0.907334594	0.589554482	0.637138716	0.155659810			
	mapped											<u>-</u>
	negative	mapped										
	positive											
	reduced			-0.757619964	0.254238286	-0.855776208	0.882223724	0.934251344	-0.181842184			
	reduced			-0.094497925 -0.984382248	0.898559795	0.192596170	0.624809658	0.797070428	0.039823246			
			2	-0.984382248	0.279115160	0.814669187	0.179108964	0.274277431	-0.088080379			
		filtered										T
		Intered										
				0 0.2542	38286 0.8822	23724 0.934	251344					
				1 0.8985				070428 0.039	823246			
				2 0.2791				277431				
												2
		reduced										^
						0 2.070	713355					
							859297					
						2 1.547	170743					
												<u>-</u>
	🕮 Delete											

sys.cycle(0);

Copyright © Lakebolt Researc

Findings and Preliminary Decisions

- Post grade survey: nearly all students reported that Lilly was valuable or very valuable to their learning experience. No one considered it detrimental.
- Tech issues: deployment turned out to be even more of a challenge than anticipated 😕
- Focusing on concepts and paradigms, showing how they are supported in different languages, reduces the "are we learning the right language" worries.
- Adding Lilly and JavaScript appears to help overcome syntax-related anxiety.
- We are replacing C with C++ (already used C++ last trimester) even more.
- We also plan to use **Haskell** to show examples of parametric polymorphism.

References

- [1] F. Hermans, "Keynote: How to teach programming and other things?," https://www.youtube.com/watch?v=UJxXgugvXmE, 2018..
- [2] S. P. Jones, A. Blackwell, and M. Burnett, "A user-centred approach to functions in Excel," in *ACM SIGPLAN Notices*, 2003, vol. 38, no. 9, pp. 165–176, doi: 10.1145/944746.944721.
- [3] R. Abraham, M. Burnett, and M. Erwig, "Spreadsheet Programming," in Wiley *Encyclopedia of Computer Science and Engineering*, 2009, pp. 1–10.
- [4] S. P. Jones, M. Burnett, and A. Blackwell, "Spreadsheets : functional programming for the masses." https://www.slideshare.net/kfrdbs/peyton-jones.
- [5] Microsoft Research, "Future of Spreadsheeting," 2019. https://www.microsoft.com/en-us/research/video/future-of-spreadsheeting/.
- [6] Microsoft Research, "LAMBDA," 2020. https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546.
- [7] M. McCutchen, J. Borghouts, A. D. Gordon, and S. P. Jones, "Elastic Sheet-Defined Functions : Generalising Spreadsheet Functions to Variable-Size Input Arrays *," vol. 1, no. March, 2018.
- [8] M. Figuera, "ZenSheet Studio: A Spreadsheet-Inspired Environment for Reactive Computing," in SPLASH Companion 2017 -Proceedings Companion of the 2017 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity, Oct. 2017, pp. 33–35, doi: 10.1145/3135932.3135949.
- [9] E. Alda and M. Figuera, "ZenSheet: a live programming environment for reactive computing," 2017. https://2017.splashcon.org/details/live-2017/5/ZenSheet-a-live-programming-environment-for-reactive-computing.
- [10] Microsoft Research, "Preview of Dynamic Arrays in Excel," 2018. https://techcommunity.microsoft.com/t5/excelblog/preview-of-dynamic-arrays-in-excel/ba-p/252944.
- [11] J. G. Siek and W. Taha, "Gradual typing for objects," in *ECOOP'07*, 2007, pp. 2–27.
- [12] E. Alda and J. Lopéz, "Lambda Days 2020," 2020. https://www.youtube.com/watch?v=mJa0_gKE6xo.