
THEY ALREADY KNOW THE SYNTAX!

The Case for Spreadsheets in Programming Education

Learning Syntax is Known to be an Obstacle in Programming Education

Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)

Scratch [MIT Media Lab] Hedy [Felienne Hermans, Leiden University]

Math Abstractions … Baby Steps

I am one baby syntax turtle ➔

Back to basics - let’s reminisce our early computing education:

Math Abstractions …

2 / 7 + 3 / 7 = 5 / 7

3 4

9

9 (3 + 4) = 63x
1,000,000 – 997 = 999,003

6 7 = 42x

11 +

31

42

Positional numeral system, operations, operator precedence (!) …

Math Abstractions
The turtles … they keep … multiplying (!) – here we are, at the end of middle school and early high school:

How much more “syntax” must we feed students to start learning programming?

Raise to Power Multiplication Division Modulo Addition Subtraction
String

Concatenation

MATH 𝑥𝑦 𝑥𝑦 | x * y 𝑥 ÷ 𝑦 | x / y 𝑥 𝑚𝑜𝑑 𝑦 𝑥 + 𝑦 𝑥 − 𝑦 𝑥𝑦 | 𝑥 ∙ 𝑦

FORTRAN x ** y x * y x / y mod(x, y) x + y x – y x // y

LISP (pow x y) (* x y) (/ x y) (mod x y) (+ x y) (– x y) (concatenate x y)

C / C++ pow(x, y) x * y x / y x % y x + y x – y x + y

Haskell x ^ y | x ** y x * y x / y mod x y x + y x – y x ++ y

Python x ** y x * y x / y x % y x + y x – y x + y

Java Math.pow(x, y) x * y x / y x % y x + y x – y x + y

JavaScript x ** y x * y x / y x % y x + y x – y x + y

OCaml x ** y x * y | x *. y x / y | x /. y x mod y x + y | x +. y x – y | x –. y x ^ y

MS-Excel x ^ y x * y x / y mod(x, y) x + y x – y x & y

.:. OK, sure, but those are just expressions. That’s not programming, right? I mean, expressions aren’t enough, right? ➔

Note: G.A.M.N. stands for Generally accepted Math notation

A User-Centred Approach to Functions in Excel

30th June 2003

Simon Peyton Jones Alan Blackwell Margaret Burnett
Microsoft Research Cambridge University Oregon State University

“just expressions”: yes, to program with spreadsheets all the syntax you need to know is that of expressions!

Critique of the Traditional Spreadsheet Core

• Lack of functional abstraction
• Considerable research work has been done on this

• December 3rd, 2020: Microsoft Research announced LAMBDA

• Overly simplistic type system
• All top-level variables must be a worksheet

• Worksheets are non-composable cell containers

• All cells are unitype and must be referenced via coordinates

• A1 notation should be considered harmful

• Entanglement of model and visualization
• Worksheets are the only true variables of the core

• They are containers that hold state, which includes unreduced expressions

• Worksheets are also the primary element of the presentation
• They play an important role as UI layout managers

But traditional spreadsheets have issues that make them unacceptable for education and other purposes …

ZenSheet / Lilly

A language-centric redesign of spreadsheets has been shown to work well

ZenSheet supports composable data structures and functional abstraction.

2D arrays can be used as worksheets: it truly generalizes spreadsheets!

Lilly natively supports a function formula(φ) that returns CVALUE(φ) without computing RVALUE(φ)

But to achieve this result we had to extend a traditional model of computing

Experience Report: Lilly in Action

Our Experience Report:
Complementing Programming Education with Lilly and ZenSheet

• Setting

• Online classes (university is still closed) with no technical support
• Students set up their own lab, with material and assistance provided by yours truly

• GitHub (https://github.com/), MSYS2 (https://www.msys2.org/), …

• Students must learn C in 10 weeks
• Nearly all of them have no programming experience

• An old professor and I have been advocating to modernize the curriculum
• … in fact, we have already started to do so, under the RADAR

• … and have been gaining support from researchers and institutions

• Lilly will officially be part of the course in the period that starts next week

ZenSheet REPL - Beta 0.1

Connecting via net protocol to localhost:3899 ...

< ZR > :: data := [0, 1, 42, 67, 3, 7, 997, 8];

ACK: :: data := [0, 1, 42, 67, 3, 7, 997, 8];

< ZR > filter(fn(x) -> x < 50, data)

OK: filter(fn(x) -> x < 50, data) ==> [0, 1, 42, 3, 7, 8]

< ZR > :: predicate := fn(x) -> x < 50;

ACK: :: predicate := fn(x) -> x < 50;

< ZR > :: z := 'filter(predicate, data)';

ACK: :: z := 'filter(predicate, data)’;

< ZR > z

OK: z ==> [0, 1, 42, 3, 7, 8]

< ZR > predicate := fn(x) -> x % 2 = 0;

ACK: predicate := fn(x) -> x % 2 = 0;

<13: 7/7 => 7> z

OK: z ==> [0, 42, 8]

Lilly REPL Session

The response to an action can be an ACK,

followed by an echo of the command, or an

ERROR with a descriptive message.

The response to an expression can be an OK

followed by a description of the reduction, or an

ERROR with a descriptive message.

Variable z in this session is initialized with a quoted

expression, therefore inferred to have a lazy type

Higher Order Functional Abstraction Example
User implementation of map, filter, fold
// map

:: mapz := fn(f, seq) ->

if(empty(seq), seq, cons(f(head(seq)), mapz(f, tail(seq))));

// filter

:: filterz := fn(pred, seq) ->

if(empty(seq), seq, if(pred(head(seq)), cons(head(seq), filterz(pred, tail(seq))), filterz(pred, tail(seq))));

// fold

:: foldz := fn(mfn, init, seq) ->

if(empty(seq), init, foldz(mfn, mfn(init, head(seq)), tail(seq)));

Higher Order Functions: a Reactive Pipeline Model
///

/// hof.sym

///

/// higher order functions example: reactive pipeline model

///

array[] => array[] => lazy double input := [

['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()'],

['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()'],

['uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()', 'uniform()']

];

lazy var negative := '/.(x) -> x < 0';

lazy var positive := '/.(x) -> x >= 0';

lazy var mapped := 'map(/.(row) -> map(/.(x) -> 2 * x - 1, row), input)';

lazy var filtered := 'map(/.(row) -> filter(positive, row), mapped)';

lazy var reduced := 'map(/.(row) -> sum(row), filtered)';

Reactive Pipeline Model – rendered in ZenSheet UI

Findings and Preliminary Decisions

• Post grade survey: nearly all students reported that Lilly was valuable or very valuable to
their learning experience. No one considered it detrimental.

• Tech issues: deployment turned out to be even more of a challenge than anticipated

• Focusing on concepts and paradigms, showing how they are supported in different
languages, reduces the “are we learning the right language” worries.

• Adding Lilly and JavaScript appears to help overcome syntax-related anxiety.

• We are replacing C with C++ (already used C++ last trimester) even more.

• We also plan to use Haskell to show examples of parametric polymorphism.

References
• [1] F. Hermans, “Keynote: How to teach programming and other things?,” https://www.youtube.com/watch?v=UJxXgugvXmE, 2018. .
• [2] S. P. Jones, A. Blackwell, and M. Burnett, “A user-centred approach to functions in Excel,” in ACM SIGPLAN Notices, 2003, vol. 38,

no. 9, pp. 165–176, doi: 10.1145/944746.944721.
• [3] R. Abraham, M. Burnett, and M. Erwig, “Spreadsheet Programming,” in Wiley Encyclopedia of Computer Science and Engineering,

2009, pp. 1–10.
• [4] S. P. Jones, M. Burnett, and A. Blackwell, “Spreadsheets : functional programming for the masses.”

https://www.slideshare.net/kfrdbs/peyton-jones.
• [5] Microsoft Research, “Future of Spreadsheeting,” 2019. https://www.microsoft.com/en-us/research/video/future-of-

spreadsheeting/.
• [6] Microsoft Research, “LAMBDA,” 2020. https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-

formulas-into-custom-functions/ba-p/1925546.
• [7] M. McCutchen, J. Borghouts, A. D. Gordon, and S. P. Jones, “Elastic Sheet-Defined Functions : Generalising Spreadsheet Functions

to Variable-Size Input Arrays ∗,” vol. 1, no. March, 2018.
• [8] M. Figuera, “ZenSheet Studio: A Spreadsheet-Inspired Environment for Reactive Computing,” in SPLASH Companion 2017 -

Proceedings Companion of the 2017 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity, Oct. 2017, pp. 33–35, doi: 10.1145/3135932.3135949.

• [9] E. Alda and M. Figuera, “ZenSheet: a live programming environment for reactive computing,” 2017.
https://2017.splashcon.org/details/live-2017/5/ZenSheet-a-live-programming-environment-for-reactive-computing.

• [10] Microsoft Research, “Preview of Dynamic Arrays in Excel,” 2018. https://techcommunity.microsoft.com/t5/excel-
blog/preview-of-dynamic-arrays-in-excel/ba-p/252944.

• [11] J. G. Siek and W. Taha, “Gradual typing for objects,” in ECOOP’07, 2007, pp. 2–27.
• [12] E. Alda and J. Lopéz, “Lambda Days 2020,” 2020. https://www.youtube.com/watch?v=mJa0_gKE6xo.

	Slide 1: They Already Know the Syntax!
	Slide 2: Learning Syntax is Known to be an Obstacle in Programming Education Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)
	Slide 3: Math Abstractions … Baby Steps
	Slide 4: Math Abstractions …
	Slide 5: Math Abstractions
	Slide 6
	Slide 7: Students Already Know (most of) The Syntax!
	Slide 8
	Slide 9: Critique of the Traditional Spreadsheet Core
	Slide 10: ZenSheet / Lilly
	Slide 11: Extending Christopher Strachey’s Model
	Slide 12: Experience Report: Lilly in Action
	Slide 13: Our Experience Report: Complementing Programming Education with Lilly and ZenSheet
	Slide 14: Lilly REPL Session The response to an action can be an ACK, followed by an echo of the command, or an ERROR with a descriptive message. The response to an expression can be an OK followed by a description of the reduction, or an ERROR with a
	Slide 15: Higher Order Functional Abstraction Example User implementation of map, filter, fold
	Slide 16: Higher Order Functions: a Reactive Pipeline Model
	Slide 17: Reactive Pipeline Model – rendered in ZenSheet UI
	Slide 18: Findings and Preliminary Decisions
	Slide 19: References

